Math, asked by anujpratap4701, 1 year ago

Evaluate [sin square theta + sin square (90° - theta)] / [3(sec square 61° - cot square 29°)] - [3 cot square 30° sin square 54° sec square 36°] / [2(cosec square 65° - tan square 25°)] .

Answers

Answered by DelcieRiveria
142

Answer: The value of the given expression is -\frac{25}{6}.

Explanation:

The given expression is,

\frac{\sin^2\theta+\sin^2(90-\theta)}{3[\sec^2(61)-\cot^2(29)]}-\frac{3\cot^2(30)\sin^2(54)\sec^2(36)}{2[\csc^2(65)-\tan^2(25)]}

\frac{\sin^2\theta+\sin^2(90-\theta)}{3[\sec^2(61)-\cot^2(90-61)]}-\frac{3\cot^2(30)\sin^2(54)\sec^2(90-54)}{2[\csc^2(65)-\tan^2(90-65)]}

Using quadrant concepts we get,

\frac{\sin^2\theta+\cos^2(\theta)}{3[\sec^2(61)-\tan^2(61)]}-\frac{3\cot^2(30)\sin^2(54)\csc^2(54)}{2[\csc^2(65)-\cot^2(65)]}

Using the formulas,

\sin^2\theta+\cos^2(\theta)=1\\\sec^2(\theta)-\tan^2(\theta)=1\\\csc^2(\theta)-\cot^2(\theta)=1\\\csc\theta=\frac{1}{sin^2\theta}

We get,

\frac{1}{3(1)}-\frac{3\cot^2(30)(1)}{2(1)}

cot(30)=\sqrt{3}

\frac{1}{3} -\frac{3\times 3\times 1}{2\times 1}

\frac{2-27}{3(2)}

\frac{-25}{6}

Therefore, the value of the expression is -\frac{25}{6}.

Answered by princekaushal7210
28

Answer:

Step-by-step explanation:

Attachments:
Similar questions