EVALUATE : SIN THETA + COS THETA + SIN THETA COS (90°- THETA) COS THETA / SEC(90°-theta) + cos theta sin (90-theta)sin theta /cosec(90°-theta) - 2 sin(90°-theta) cos (90°-theta)
Answers
➡️Identity used:
so,
is the final solution.
➡️➡️If there is
Answer:
cos(90°−θ)=sinθ
cosec(90°−θ)=secθ
sin(90°−θ)=cosθ
sec(90°−θ)=cosecθ
sin
2
θ+cos
2
θ=1
\begin{gathered}sin \theta + cos \: \theta + sin \: \theta \: cos (90°- \theta) \frac{cos \: \theta}{sec(90° - \theta)} \\ + cos \: \theta sin (90°-\theta) \frac{sin \: \theta}{cosec(90° - \theta)} - 2 sin(90°-\theta) cos (90°-\theta) \\ \\ =sin \: \theta + cos \: \theta + sin \: \theta \: sin\theta \frac{cos \: \theta}{cosec \: \theta} + cos \: \theta \: cos\theta \: \frac{sin\theta}{sec \: \theta} - 2 \: cos\theta \: sin \: \theta \\ \\ = sin \: \theta + cos\theta + {sin}^{3} \theta \: cos\theta + {cos}^{3} \theta \: sin \: \theta - 2 \: cos\theta \: sin \: \theta \\ \\ = sin \: \theta + cos\theta + cos \: \theta \: sin \: \theta( {sin}^{2}\theta + { cos}^{2}\theta) - 2 \: cos\theta \: sin \: \theta \\ \\ = sin \: \theta + cos\theta + cos \: \theta \: sin \: \theta - 2 \: cos\theta \: sin \: \theta \\ \\ = sin \: \theta + cos\theta - cos \: \theta \: sin \: \theta \\ \\ \end{gathered}
sinθ+cosθ+sinθcos(90°−θ)
sec(90°−θ)
cosθ
+cosθsin(90°−θ)
cosec(90°−θ)
sinθ
−2sin(90°−θ)cos(90°−θ)
=sinθ+cosθ+sinθsinθ
cosecθ
cosθ
+cosθcosθ
secθ
sinθ
−2cosθsinθ
=sinθ+cosθ+sin
3
θcosθ+cos
3
θsinθ−2cosθsinθ
=sinθ+cosθ+cosθsinθ(sin
2
θ+cos
2
θ)−2cosθsinθ
=sinθ+cosθ+cosθsinθ−2cosθsinθ
=sinθ+cosθ−cosθsinθ
so,
\begin{gathered} = sin \: \theta + cos\theta (1 - \: sin \: \theta ) \\ \\ \end{gathered}
=sinθ+cosθ(1−sinθ)
is the final solution.
➡️➡️If there is
\begin{gathered}sin \theta cos \: \theta + sin \: \theta \: cos (90°- \theta) \frac{cos \: \theta}{sec(90° - \theta)} \\ + cos \: \theta sin (90°-\theta) \frac{sin \: \theta}{cosec(90° - \theta)} \\- 2 sin(90°-\theta) cos (90°-\theta) =0\\ \end{gathered}
sinθcosθ+sinθcos(90°−θ)
sec(90°−θ)
cosθ
+cosθsin(90°−θ)
cosec(90°−θ)
sinθ
−2sin(90°−θ)cos(90°−θ)=0