Math, asked by arshilak786, 8 months ago

Evaluate
∫ sin√x/√x dx​

Answers

Answered by Anonymous
17

Solution:-

 \to \rm \:  \int \dfrac{ \sin\sqrt{x} }{ \sqrt{x} } dx

Now we can write as

 \rm \to \int \sin\sqrt{x}  \times  \dfrac{1}{ \sqrt{x} }  \: dx

Using substitution method

 \rm let \:  \sqrt{x}  = t

 \rm \: ( \sqrt{x} ) \dfrac{dx}{dt}  = tdt

 \rm \:  \dfrac{1}{2 \sqrt{x} } dx = dt

Now take

\rm \to \int \sin\sqrt{x}  \times  \dfrac{1}{ \sqrt{x} }  \: dx

Now multiply and divide by 2

\rm \to2 \int \sin\sqrt{x}  \times  \dfrac{1}{ 2\sqrt{x} }  \: dx

So we have

 \rm \:  \dfrac{1}{2 \sqrt{x} } dx = dt

We get

 \rm \:  2\int \sin  t \: dt

so integration of of sinx is - cos x

 \rm \: 2( - cos \:   t) + c

 \rm \:  - 2 \cos \:  t + c

Now put the value of t

 \rm \:  - 2 \cos \sqrt{x}  + c

Answer:-

\rm \:  - 2 \cos \sqrt{x}  + c

Similar questions