Math, asked by june41, 10 months ago

evaluate sin135°cos145°+cos135°sin145°​

Answers

Answered by MaheswariS
14

\textbf{Given:}

sin\,135^{\circ}\;cos\,145^{\circ}+cos\,135^{\circ}\;sin\,145^{\circ}

\textbf{To find:}

\text{The value of}

sin\,135^{\circ}\;cos\,145^{\circ}+cos\,135^{\circ}\;sin\,145^{\circ}

\textbf{Solution:}

\text{Consider,}

sin\,135^{\circ}\;cos\,145^{\circ}+cos\,135^{\circ}\;sin\,145^{\circ}

\text{Using,}

\boxed{\bf\,sin(A+B)=sinA\,cosB+cosA\,sinB}

=sin(135^{\circ}+145^{\circ})

=sin\,280^{\circ}

=sin(270^{\circ}+10^{\circ})

=-cos\,10^{\circ}

\implies\,\bf\,sin\,135^{\circ}\;cos\,145^{\circ}+cos\,135^{\circ}\;sin\,145^{\circ}=-cos\,10^{\circ}

Answered by nishasarma637
3

Answer:

 \sin(135)  \cos(145 )  +  \cos(135)  \sin(145)  \\   = \sin(135 + 145)  \\  =  \sin(280)  \\  =  \sin(270 + 10)  \\  =  -  \cos(10)

Similar questions