Math, asked by jayesh01956, 7 months ago

Evaluate: (sin² 30° + 4cot² 45° - sec²60°)(cosec² 45° × sec²30°)​

Answers

Answered by MoodyCloud
9

To evaluate:-

  • (sin² 30° + 4cot² 45° - sec²60°)(cosec² 45° × sec²30°)

Solution:-

(sin² 30° + 4cot² 45° - sec²60°)(cosec² 45° × sec²30°)

sin 30° = 1/2

cot 45° = 1

sec 60° = 2

cosec 45° = 2

sec 30° = 2/3

Put all values,

 \implies \sf  [ { (\dfrac{1}{2}) }^{2} + 4 \times  {(1)}^{2}   -  {(2)}^{2}]  \times [ {( \sqrt{2} )}^{2}  \times  {( \frac{2}{ \sqrt{3} } )}^{2}]

 \implies \sf  (\dfrac{1}{4}  +  \cancel{4} -  \cancel{4}) \times (2 \times  \frac{4}{3} )

 \implies \sf  \dfrac{1}{ \cancel{4} } \times 2 \times  \dfrac{ \cancel{4}}{3}

 \implies \sf  \dfrac{2}{3}

Therefore,

(sin² 30° + 4cot² 45° - sec²60°)(cosec² 45° × sec²30°) =   \sf  \dfrac{2}{3}

Answered by Darkshadenikku
0

\boxed{</p><p></p><p>\begin{minipage}{7 cm}</p><p></p><p>Fundamental Trigonometric Identities  \\sin^2\theta + \cos^2\theta=1 \\ </p><p>1+\tan^2\theta = \sec^2\theta \\ </p><p>1+\cot^2\theta = \text{cosec}^2 \, \theta</p><p></p><p>\end{minipage}</p><p></p><p>}

Similar questions