evaluate:-
sin²23° + sin² 67°
Answers
Answer:
hello...
bro.....
this is your answer.......
Given→
sin²1° + sin²23° + sin² 45 ° + sin² 67° + sin² 89°
Because there is a difference of 22° among all terms .
Solution→
Sin²1 ° can be written in the form of cos theta as
sin theta = cos (90- theta )
sin ²1. = cos² ( 90-1 )
Sin²1°. = cos²89°
Similarly →
sin²23°. = cos²( 90- 23)
sin²23°. = cos²67°
Now putting theses values in given series.
(cos²89° + sin²89°) +(cos²67° +sin²67°) +sin²45°
we know that sin²a + cos²a = 1 and value of sin 45° = 1/√2
→ 1 + 1 +( 1/√2 )²
→ 2 + 1/2
→ 5 /2
hope this will help you mate...........
please mark me as brainliest..........
pleaseeeee..........
Answer: 1
Step-by-step explanation: 90 - 67 = 23
sin^2(90-67) = cos^2 (23)
so, sin^2 (23) + cos^2 (23) = 1
as sin^2 (Theta) + cos^2(theta) = 1