Math, asked by rocksubhash, 11 months ago

evaluate sin45°/sec30°+cosec30°​

Answers

Answered by apoorv10dbms2020
9

Answer:

sin \: 45 =  \frac{1}{ \sqrt{2} }  \\ sec \: 30 =  \frac{2}{ \sqrt{3} }  \\ cosec \: 30 = 2 \\ now \:  \\  \frac{sin \: 45}{sec \: 30}  + cosec \: 30 =  \frac{ \frac{1}{ \sqrt{2} } }{ \frac{2}{ \sqrt{3} } }  + 2 \\  =  \frac{ \sqrt{3} }{2 \sqrt{2} }  + 2

Answered by smithasijotsl
0

Answer:

\frac{sin \ 45^0}{sec \ 30^0} +cosec \ 30^0 = \frac{\sqrt{6}+8 }{4}

Step-by-step explanation:

To find,

\frac{sin \ 45^0}{sec \ 30^0} +cosec \ 30^0

Solution:

Recall the formulas

sin 45° = \frac{1}{\sqrt{2} }

sec 30° = \frac{2}{\sqrt{3} }

cosec 30° = 2

By substituting the values in the equation we get

\frac{sin \ 45^0}{sec \ 30^0} +cosec \ 30^0

=  \frac{\frac{1}{\sqrt{2} } }{\frac{2}{\sqrt{3 } } } +2

= \frac{\sqrt{3} }{2\sqrt{2} } +2

= \frac{\sqrt{3} + 4\sqrt{2} }{2\sqrt{2} }

To rationalize the denominator, we should multiply the numerator and denominator with the rationalizing factor.

The rationalizing factor is √2

\frac{\sqrt{3} + 4\sqrt{2} }{2\sqrt{2} } = \frac{\sqrt{3} + 4\sqrt{2} }{2\sqrt{2} }X\frac{\sqrt{2} }{\sqrt{2} }

= \frac{\sqrt{6} + 4\sqrt{4} }{2\sqrt{4} }

= \frac{\sqrt{6} + 4X2 }{4}

= \frac{\sqrt{6}+8 }{4}

\frac{sin \ 45^0}{sec \ 30^0} +cosec \ 30^0 = \frac{\sqrt{6}+8 }{4}

#SPJ3

Similar questions