Math, asked by rohandighe59, 6 months ago

Evaluate∫ sin4x cos2xdx​

Answers

Answered by shoupo9K
2

Answer:

ANSWER

∫sin

4

x⋅cos

2

xdx=∫(sin

2

x)(sin

2

x⋅cos

2

x)dx

=∫

2

1

(1−cos2x)(

2

sin2x

)

2

dx

cos2x=1−2sin

2

x

sin

2

x=

2

1−cos2x

sin2x=2sinxcosx

The integral becomes

=∫

2

1

(1−cos2x)⋅(

2

sin2x

)

2

dx

=

8

1

(∫(1−cos2x)⋅sin(2x)dx))

=

8

1

(∫(sin

2

2x−cos2x⋅sin

2

(2x))dx)

=

8

1

2

1

⋅2sin

2

(2x)dx−∫

2

1

⋅2cos2xsin

2

2xdx

=

8

1

(∫

2

1

⋅(1−cos(4x))dx−∫

2

1

sin

2

2xdsin2x)

=

16

1

(∫(1−cos(4x)dx−∫sin

2

(2x)dsin2x)

dx

dsin2x

=2cos2x

d

sin(2x)=2cos2x⋅dx

=

16

1

(x−

4

sin4x

3

sin

3

(2x)

)+C.

Similar questions