Math, asked by kartikbhandhari147, 4 months ago

Evaluate

sin60° • cos30° - cos30° • sin30°​

Answers

Answered by Anonymous
1

1

Hope it's helpful to you

Answered by Anonymous
5

To Find :

  • sin60° • cos30° - cos30° • sin30°

⠀ ⠀⠀ ⠀ ⠀⠀ ⠀

Solution :

sin60° • cos30° - cos30° • sin30°

sin60° × cos30° - cos30° × sin30°

⠀ ⠀⠀ ⠀

By substituting the values of :

  • sin60° =  \sf \dfrac{\sqrt{3}}{2}
  • cos30° =  \sf \dfrac{\sqrt{3}}{2}
  • sin30° =  \sf \dfrac{1}{2}

⠀ ⠀⠀ ⠀

 \sf : \implies \dfrac{\sqrt{3}}{2} \times \dfrac{\sqrt{3}}{2} - \dfrac{\sqrt{3}}{2} \times \dfrac{1}{2}

 \sf : \implies \dfrac{\sqrt{3} \times \sqrt{3}}{2 \times 2} - \dfrac{\sqrt{3} \times 1}{2\times 2}

 \sf : \implies \dfrac{(\sqrt{3})^{2}}{4} - \dfrac{\sqrt{3}}{4}

 \sf : \implies \dfrac{3}{4} - \dfrac{\sqrt{3}}{4}

 \sf : \implies \dfrac{3 - \sqrt{3}}{4}

⠀ ⠀⠀ ⠀

Hence, value of sin60° • cos30° - cos30° • sin30° is :

  •  \bf \dfrac{3 - \sqrt{3}}{4}
Similar questions