Math, asked by rahulkennedy, 11 months ago

evaluate sin65/cos75​

Answers

Answered by anutwins2626
1

\mathrm{Simplify}

Answer:

\frac{\sin \left(65^{\circ \:}\right)}{\cos \left(75^{\circ \:}\right)}=2\left(2+\sqrt{3}\right)\sqrt{2-\sqrt{3}}\sin \left(65^{\circ \:}\right)\quad \begin{pmatrix}\mathrm{Decimal:}&3.50170\dots \end{pmatrix}

Step-by-step explanation:

\frac{\sin \left(65^{\circ \:}\right)}{\cos \left(75^{\circ \:}\right)}

\mathrm{Use\:the\:following\:identity}:\quad \cos \left(x\right)=\sin \left(90^{\circ \:}-x\right)

\cos \left(75^{\circ \:}\right)=\sin \left(90^{\circ \:}-75^{\circ \:}\right)

=\frac{\sin \left(65^{\circ \:}\right)}{\sin \left(90^{\circ \:}-75^{\circ \:}\right)}

\mathrm{Simplify}

=\frac{\sin \left(65^{\circ \:}\right)}{\sin \left(15^{\circ \:}\right)}

\sin \left(15^{\circ \:}\right)=\frac{\sqrt{2-\sqrt{3}}}{2}\\\sin \left(15^{\circ \:}\right)

\mathrm{Write}\:\sin \left(15^{\circ \:}\right)\:\mathrm{as}\:\sin \left(\frac{30^{\circ \:}}{2}\right)\\\\=\sin \left(\frac{30^{\circ \:}}{2}\right)\\\\\mathrm{Using\:the\:half\:angle\:identity}:\quad \sin \left(\frac{x}{2}\right)=\sqrt{\frac{1-\cos \left(x\right)}{2}}\\\\=\sqrt{\frac{1-\cos \left(30^{\circ \:}\right)}{2}}\mathrm{Use\:the\:following\:trivial\:identity}:\quad \cos \left(30^{\circ \:}\right)=\frac{\sqrt{3}}{2}\\\\=\sqrt{\frac{1-\frac{\sqrt{3}}{2}}{2}}\\\\\sqrt{\frac{1-\frac{\sqrt{3}}{2}}{2}}=\frac{\sqrt{2-\sqrt{3}}}{2}\\\\=\frac{\sqrt{2-\sqrt{3}}}{2}\\\\=\frac{\sin \left(65^{\circ \:}\right)}{\frac{\sqrt{2-\sqrt{3}}}{2}}\\\\\mathrm{Simplify}\:\frac{\sin \left(65^{\circ \:}\right)}{\frac{\sqrt{2-\sqrt{3}}}{2}}:\quad 2\left(2+\sqrt{3}\right)\sqrt{2-\sqrt{3}}\sin \left(65^{\circ \:}\right)\\

=2\left(2+\sqrt{3}\right)\sqrt{2-\sqrt{3}}\sin \left(65^{\circ \:}\right)\\

Answered by anuham97
2

Answer:

decimal form

3.50170439

2\left(2+\sqrt{3}\right)\sqrt{2-\sqrt{3}}\sin \left(65^{\circ \:}\right)

Similar questions