Math, asked by arkaghosharishkhanak, 9 months ago

Evaluate: (sin85°/cos15°)^2 + (cos85°/sin15°)^2 - 2sin^2 (90°)( please say fast)​

Answers

Answered by Swarup1998
2

Trigonometric values

To find: the value of (\frac{sin85^{\circ}}{cos15^{\circ}})^{2}+(\frac{cos85^{\circ}}{sin15^{\circ}})^{2}-2\:sin^{2}90^{\circ}

Solution:

  • We know that, sin(90^{\circ}-A)=cosA
  • and cos(90^{\circ}-A)=sinA

  • Now, (\frac{sin85^{\circ}}{cos15^{\circ}})^{2}+(\frac{cos85^{\circ}}{sin15^{\circ}})^{2}-2\:sin^{2}90^{\circ}

  • =(\frac{sin(90^{\circ}-15^{\circ})}{cos15^{\circ}})^{2}+(\frac{cos(90^{\circ}-15^{\circ})}{sin15^{\circ}})^{2}-2\:(1)

  • =(\frac{cos15^{\circ}}{cos15^{\circ}})^{2}+(\frac{sin15^{\circ}}{sin15^{\circ}})^{2}-2

  • =1^{2}+1^{2}-2

  • =1+1-2

  • =0

Answer: (\frac{sin85^{\circ}}{cos15^{\circ}})^{2}+(\frac{cos85^{\circ}}{sin15^{\circ}})^{2}-2\:sin^{2}90^{\circ}=0

Note:

  • To solve this type of problems, remember that trigonometric formulæ:
  • sin(90^{\circ}-A)=cosA
  • cos(90^{\circ}-A)=sinA
Similar questions