Evaluate:
sina cosa - (sina cos(90-a)cosa/sec(90 -a)) - (cosa sin(90-a)sina/cosec(90-a))
Answers
Answered by
57
sina.cosa - {sina.cos(90°-a).cosa}/{sec(90°-a)} - {cosa.sin(90°-a)sina}/{cosec(90°-a)}
= sina.cosa - {sina.sina.cosa}/{coseca} - {cosa.cosa.sina}/{seca} [∵ sin(90°-a)=cosa, cos(90°-a)=sina , sec(90°-a) = coseca , cosec(90°-a) = seca]
= sina.cosa - sin³a.cosa - cos³a.sina [∵1/seca = cosa , 1/coseca = sina]
= sina.cosa - sina.cosa[sin²a + cos²a]
= sina.cosa - sina.cosa × 1 [ ∵sin²Ф + cos²Ф = 1 ]
= 0
Hence, answer is 0
= sina.cosa - {sina.sina.cosa}/{coseca} - {cosa.cosa.sina}/{seca} [∵ sin(90°-a)=cosa, cos(90°-a)=sina , sec(90°-a) = coseca , cosec(90°-a) = seca]
= sina.cosa - sin³a.cosa - cos³a.sina [∵1/seca = cosa , 1/coseca = sina]
= sina.cosa - sina.cosa[sin²a + cos²a]
= sina.cosa - sina.cosa × 1 [ ∵sin²Ф + cos²Ф = 1 ]
= 0
Hence, answer is 0
Answered by
0
Answer:
0
Step-by-step explanation:
cosA sin A-sin A cos A
=1-1
=0
Similar questions