Evaluate (sinx - cosx)^2 + (sinx + cosx)^2
Answers
Answered by
2
(sinx - cosx)² + (sinx + cosx)²
=> (sin²x - 2sinxcosx + cos²x) + (sin²x + 2sinxcosx + cos²x)
=> 1 - 2sinxcosx + 1 + 2sinxcosx
=> 2
{ As we know that : sin²A + cos²A = 1 }
I hope it will be helpful for you ✌️✌️
Mark it as brainliest and follow me ☺️☺️
Answered by
1
.
➡Given here,
↪(Sinx-Cosx)²+(Sinx+Cosx)².
(Sinx-Cosx)²+(Sinx+Cosx)².= (Sin²x+cos²x-2sinx cosx)+(sin²x+cos²x+2sinx cosx)
(Sinx-Cosx)²+(Sinx+Cosx)².= (Sin²x+cos²x-2sinx cosx)+(sin²x+cos²x+2sinx cosx)= 2(sin²x+cos²x)
(Sinx-Cosx)²+(Sinx+Cosx)².= (Sin²x+cos²x-2sinx cosx)+(sin²x+cos²x+2sinx cosx)= 2(sin²x+cos²x)= 2(1)
(Sinx-Cosx)²+(Sinx+Cosx)².= (Sin²x+cos²x-2sinx cosx)+(sin²x+cos²x+2sinx cosx)= 2(sin²x+cos²x)= 2(1)=1.
➡We know .
↪Sin²x+Cos²x=1.
.
Similar questions