Math, asked by sharada99, 5 months ago

evaluate tan 60°+ cot 30°/ sin 60°+ cot 30°​

Answers

Answered by kediakishan3
1

Answer

tan 60 +cot 30/sin60+cot 30

√3+√3/(√3/2)+√3

√3+2+√3

2+2√3 is the answer

mark brainlist if my answer is right

Answered by mathdude500
1

\large\underline{\bold{Given \:Question - }}

 \sf \: Evaluate :  \: \dfrac{tan60\degree + cot30\degree}{sin60\degree + cot30\degree}

\large\underline{\sf{Solution-}}

 \sf :\longmapsto\: \: \dfrac{tan60\degree + cot30\degree}{sin60\degree + cot30\degree}

We know that,

 \boxed{ \bf \: tan60\degree =  \sqrt{3} }

 \boxed{ \bf \: cot30\degree =  \sqrt{3} }

 \boxed{ \bf \: sin60\degree = \dfrac{ \sqrt{3} }{2} }

  • On substituting all these values, we get

\:  \:  \sf \: =  \:  \: \dfrac{ \sqrt{3}  +  \sqrt{3} }{\dfrac{ \sqrt{3} }{2}  +  \sqrt{3} }

\:  \:  \sf \: =  \:  \: \dfrac{ 2\sqrt{3}}{ \:  \:  \:  \: \dfrac{ \sqrt{3} + 2 \sqrt{3} }{2}  \:  \:  \:  \:  \: }

\:  \:  \sf \: =  \:  \: \dfrac{4  \:  \:  \cancel{\sqrt{3}} }{3  \:  \:  \: \cancel{ \sqrt{3}} }

\:  \:  \sf \: =  \:  \: \dfrac{4}{3}

\bf\implies \: \: \dfrac{tan60\degree + cot30\degree}{sin60\degree + cot30\degree}  = \dfrac{4}{3}

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions