Evaluate tan15 + sin25 cot75 cos65
Answers
Answered by
3
we know cot 75 = tan (90 - 75) = tan 15
cos 65 = sin (90- 65) = sin 25
LHS = Tan 15 + sin 25 cot 75 cos 65
= Tan 15 (1 + Sin² 25)
= 0.268 * (1 + 0.422²)
= 0.316
========
Find cos 15, tan 15 by solving polynomial equations or by using calculator.
Cos 30 = √3 /2
= 2 cos²15° - 1
=> cos² 15° = [2+√3] / 4 and Cos 15 = √2 [√3 +1] / 4
=> Sin² 15° = [2-√3] /4 and Sin 15 = √2[√3 - 1] / 4
=> tan² 15° = [2-√3] / [2+√3]
= [2 -√3]² by rationalization.
=> Tan 15 = [2-√3] = 0.268
===
Let x = cosA and A = 65°
4 cos³A - 3 cosA = cos 3A
4 cos³ 65 - 3 cos 65 = cos 195 = - cos 15 = -√2 [√3+1]/4
x³ - 3/4 x + √2 [√3+1] /16 = 0
Let x = y + 1 / (4y)
Using cubic equation solving methods we get:
y³ = (√6+√2)/32 +- [√(12+2√3) /2]
We find y³ and then y.
Then we find x and then cos 65 = sin 25 = x
x = 0.422
cos 65 = sin (90- 65) = sin 25
LHS = Tan 15 + sin 25 cot 75 cos 65
= Tan 15 (1 + Sin² 25)
= 0.268 * (1 + 0.422²)
= 0.316
========
Find cos 15, tan 15 by solving polynomial equations or by using calculator.
Cos 30 = √3 /2
= 2 cos²15° - 1
=> cos² 15° = [2+√3] / 4 and Cos 15 = √2 [√3 +1] / 4
=> Sin² 15° = [2-√3] /4 and Sin 15 = √2[√3 - 1] / 4
=> tan² 15° = [2-√3] / [2+√3]
= [2 -√3]² by rationalization.
=> Tan 15 = [2-√3] = 0.268
===
Let x = cosA and A = 65°
4 cos³A - 3 cosA = cos 3A
4 cos³ 65 - 3 cos 65 = cos 195 = - cos 15 = -√2 [√3+1]/4
x³ - 3/4 x + √2 [√3+1] /16 = 0
Let x = y + 1 / (4y)
Using cubic equation solving methods we get:
y³ = (√6+√2)/32 +- [√(12+2√3) /2]
We find y³ and then y.
Then we find x and then cos 65 = sin 25 = x
x = 0.422
kvnmurty:
clik on thanks. select best ans
Similar questions