Math, asked by parneet0502, 8 months ago

Evaluate

tan260°+4 sin245°+ 3 sec 30° + 5 cos290°
_______________________
cosec 30° + sec 60°- cot230°​

Answers

Answered by Anonymous
34

Correct question :

  •   \sf{\dfrac {tan^{2} 60 \degree + sin^{2} 45 \degree + 3 \: sec^{2} 30 \degree + 5 \: cos^{2} 90 \degree}{cosec \: 30 \degree + sec  \: 60 \degree - cot^{2}30 \degree }}

Given :

  •   \sf{\dfrac {tan^{2} 60 \degree + sin^{2} 45 \degree + 3 \: sec^{2} 30 \degree + 5 \: cos^{2} 90 \degree}{cosec \: 30 \degree + sec  \: 60 \degree - cot^{2}30 \degree }}

To find :

  • Evaluate

Solution :

  \implies \sf{\dfrac {tan^{2} 60 \degree + sin^{2} 45 \degree + 3 \: sec^{2} 30 \degree + 5 \: cos^{2} 90 \degree}{cosec \: 30 \degree + sec  \: 60 \degree - cot^{2}30 \degree }} \\  \\  \\ \implies \sf \dfrac{ (\sqrt{3})^{2} + 4 \times  (\frac{1}{ \sqrt{2} })^{2}   + 3 \times  (\frac{2}{ \sqrt{3} })^{2} + 5 \times 0^{2}}{2 + 2 -  (\sqrt{3})^{2}  }  \\  \\ \\ \implies \sf{ (\dfrac{3 + 4 \times  \frac{1}{2} + 3 \frac{4}{3} + 5 \times 0  }{4 - 3})} \\  \\  \\ \implies \sf{ \dfrac{3 + 2 + 4 +  0}{1} } \\  \\ \\    \implies{\boxed{\sf{ \red {\underline{9}}}}}


mddilshad11ab: Nice:)
Answered by ZAYNN
35

Answer:

\bf{Given :}\:\sf\dfrac {tan^{2} 60 \degree + sin^{2} 45 \degree + 3 \: sec^{2} 30 \degree + 5 \: cos^{2} 90 \degree}{cosec \: 30 \degree + sec \: 60 \degree - cot^{2}30\degree }

\bf{Evaluate :}

:\implies \sf\dfrac {tan^{2} 60 \degree + sin^{2} 45 \degree + 3 \: sec^{2} 30 \degree + 5 \: cos^{2} 90 \degree}{cosec \: 30 \degree + sec \: 60 \degree - cot^{2}30 \degree } \\\\\\:\implies \sf \dfrac{ \bigg(\sqrt{3}\bigg)^{2} + 4 \times \bigg(\dfrac{1}{ \sqrt{2} }\bigg)^{2} + 3 \times \bigg(\dfrac{2}{ \sqrt{3} }\bigg)^{2} + 5 \times \bigg(0\bigg)^{2}}{2 + 2 - \bigg(\sqrt{3}\bigg)^{2} } \\\\\\ :\implies \sf{\dfrac{3 + 4 \times {}^{1}\!/{}_{2} + 3 \times {}^{4}\!/{}_{3} + 5 \times 0 }{4 - 3}} \\\\\\:\implies \sf{ \dfrac{3 + 2 + 4 + 0}{1} } \\\\\\:\implies\underline{\boxed{\sf{9}}}

\therefore\:\underline{\textsf{Hence, the required answer is \textbf{9}}}.

\rule{180}{1.5}

\bigstar\:\sf Trigonometric\:Values :\\\begin{tabular}{|c|c|c|c|c|c|}\cline{1-6}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}& Not D$\hat{e}$fined \\\cline{1-6}\end{tabular}


mddilshad11ab: nice
Similar questions