Math, asked by jaip68473, 4 months ago

Evaluate
(tan2x + cot2x)dx.​


samsingh6064: what is dx at last
samsingh6064: what does it mean

Answers

Answered by Anonymous
11

Given Integrand,

 \displaystyle  \sf \int (tan2x + cot2x)dx

Consider t = 2x.

Differentiating both sides w.r.t x,

\longrightarrow dt/dx = 2

\longrightarrow dx = dt/2.

Accordingly,

\longrightarrow\displaystyle  \sf  \dfrac{1}{2} \int  \{tan(t)+ cot(t) \}dt \\  \\ \longrightarrow\displaystyle  \sf  \dfrac{1}{2} \int  tan(t)dt +  \dfrac{1}{2}  \int cot(t)dt \\  \\ \longrightarrow\displaystyle  \sf  \dfrac{1}{2}  ln(sec \: 2x)  +  \dfrac{1}{2}  ln(sin \: 2x)  + c \\  \\ \longrightarrow\displaystyle  \sf  \dfrac{1}{2}  ln(sec \: 2x.sin \: 2x)  + c \\  \\ \longrightarrow\displaystyle   \boxed{ \boxed{\sf ln( \sqrt{tan2x} )  + c}}

Answered by CopyThat
7

Please do go through the attachment for the explanation.

Attachments:
Similar questions