Math, asked by whitewalker123, 1 year ago

evaluate √tanXdx......................

Answers

Answered by lucky098
0
root(tan x) dx Let tan x = t2 ⇒ sec2 x dx = 2t dt ⇒ dx = [2t / (1 + t4)]dt ⇒ Integral  ∫ 2t2 / (1 + t4) dt⇒ ∫[(t2 + 1) + (t2 - 1)] / (1 + t4) dt ⇒ ∫(t2 + 1) / (1 + t4) dt + ∫(t2 - 1) / (1 + t4) dt ⇒ ∫(1 + 1/t2 ) / (t2 + 1/t2 ) dt + ∫(1 - 1/t2 ) / (t2 + 1/t2 ) dt ⇒ ∫(1 + 1/t2)dt / [(t - 1/t)2 + 2] + ∫(1 - 1/t2)dt / [(t + 1/t)2 -2]Let t - 1/t = u for the first integral ⇒ (1 + 1/t2 )dt = du and t + 1/t = v for the 2nd integral ⇒ (1 - 1/t2 )dt = dv Integral = ∫du/(u2 + 2) + ∫dv/(v2 - 2) = (1/√2) tan-1 (u/√2) + (1/2√2) log(v -√2)/(v + √2)l + c = (1/√2) tan-1 [(t2 - 1)/t√2] + (1/2√2) log (t2 + 1 - t√2) / t2 + 1 + t√2) + c = (1/√2) tan-1 [(tanx - 1)/(√2tan x)] + (1/2√2) log [tanx + 1 - √(2tan x)] / [tan x + 1 + √(2tan x)] + c

Recommend(12)Comment (0)

lucky098: soo wt
Shriabhi344: U might be from south India
Shriabhi344: I am also from south Indian so I asked
Shriabhi344: Sorry if I disturb you
lucky098: yes I'm South indian
Shriabhi344: kkk tq
whitewalker123: i couldn't understand
whitewalker123: :(
Shriabhi344: No need to understand
whitewalker123: why i want to
Similar questions