Math, asked by khushichaudhary7037, 7 months ago

evaluate :
2 {}^{x + 3}  \times 3 {}^{2x - y}  \times 5 {}^{x + y + 3}  \times 6 {}^{y + 1}     \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ 6 {}^{x + 1}  \times 10 {}^{y + 3}  \times 15 {}^{2}
there is in upon ​

Answers

Answered by tyrbylent
0

Answer:

15^{x-2}

Step-by-step explanation:

(ab)^{n} = a^{n} b^{n}

Numerator:

2^{x + 3} = 2^{x} × 2³ = 8 × 2^{x}

3^{2x-y} = \frac{6^{x} }{3^{y} }

5^{x+y+3} = 5^{x}5^{y}5^{3}

6^{y+1} = 2^{y}3^{y} × 6

Denominator:

6^{x+1} = 2^{x}3^{x} × 6

10^{y+3} = 2^{y}5^{y} × 10³

15²  

Attachments:
Similar questions