English, asked by TanviTripathi27, 8 months ago

Evaluate
( \:  {7 \: . \: 2} \: )^{2}  \:  -  \: ( \:  { \: 4 \: . \: 1} \: )^{2}  \:  \div ( \: 7 \: . \: 2 \: ) \:  -  \: ( \: 4 \: . \: 1 \: )

Answers

Answered by gunduravimudhiraj76
0

Explanation:

This page introduces various useful commands for rendering math in LaTeX, as well as instructions for building your own commands.

Contents

1 Subscripts and Superscripts

2 Math Commands

2.1 Fractions

2.2 Radicals

2.3 Sums, Products, Limits and Logarithms

2.4 Mods

2.5 Combinations

2.6 Trigonometric Functions

2.7 Calculus

2.8 Overline and Underline

3 LaTeX

3.1 Other Functions

4 Matrices

5 Text Styles in Math Mode

6 How to Build Your Own Commands

7 See Also

Subscripts and Superscripts

Subscripts and superscripts (such as exponents) can be made using the underscore _ and carat ^ symbols respectively.

Symbol Command Symbol Command

$2^{2}$ 2^2 $\textstyle a_i$ a_i

$\textstyle 2^{23}$ 2^{23} $\textstyle n_{i-1}$ n_{i-1}

$a^{i+1}_3$ a^{i+1}_3 $x^{3^2}$ x^{3^2}

$2^{a_i}$ 2^{a_i} $2^a_i$ 2^a_i

Notice that we can apply both a subscript and a superscript at the same time. For subscripts or superscripts with more than one character, you must surround with curly braces. For example, x^10 produces $x^10$, while x^{10} produces $x^{10}$.

Math Commands

Here are some commonly used math commands in LaTeX:

Fractions

Symbol Command

$\frac {1}{2}$ \frac{1}{2} or \frac12

$\frac{2}{x+2}$ \frac{2}{x+2}

$\frac{1+\frac{1}{x}}{3x + 2}$ \frac{1+\frac{1}{x}}{3x + 2}

Notice that with fractions with a 1-digit numerator and a 1-digit denominator, we can simply group the numerator and the denominator together as one number. However, for fractions with either a numerator or a denominator that requires more than one character (or if the numerator starts with a letter), you need to surround everything in curly brackets.

Use \cfrac for continued fractions.

Expression Command

$\cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1}}}}$ \cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1}}}}

Radicals

Symbol Command

$\sqrt{3}$ \sqrt{3}

$\sqrt{x+y}$ \sqrt{x+y}

$\sqrt{x+\frac{1}{2}}$ \sqrt{x+\frac{1}{2}}

$\sqrt[3]{3}$ \sqrt[3]{3}

$\sqrt[n]{x}$ \sqrt[n]{x}

Sums, Products, Limits and Logarithms

Use the commands \sum, \prod, \lim, and \log respectively. To denote lower and upper bounds, or the base of the logarithm, use _ and ^ in the same way they are used for subscripts and superscripts. (Lower and upper bounds for integrals work the same way, as you'll see in the calculus section)

Symbol Command

$\textstyle \sum_{i=1}^{\infty}\frac{1}{i}$ \sum_{i=1}^{\infty}\frac{1}{i}

$\textstyle \prod_{n=1}^5\frac{n}{n-1}$ \prod_{n=1}^5\frac{n}{n-1}

$\textstyle \lim_{x\to\infty}\frac{1}{x}$ \lim_{x\to\infty}\frac{1}{x}

$\textstyle \lim\limits_{x\to\infty}\frac{1}{x}$ \lim\limits_{x\to\infty}\frac{1}{x}

$\textstyle \log_n n^2$ \log_n n^2

Some of these are prettier in display mode:

Symbol Command

$\sum_{i=1}^{\infty}\frac{1}{i}$ \sum_{i=1}^{\infty}\frac{1}{i}

$\prod_{n=1}^5\frac{n}{n-1}$ \prod_{n=1}^5\frac{n}{n-1}

$\lim_{x\to\infty}\frac{1}{x}$ \lim_{x\to\infty}\frac{1}{x}

Note that we can use sums, products, and logarithms without _ or ^ modifiers.

Symbol Command

$\sum\frac{1}{i}$ \sum\frac{1}{i}

$\frac{n}{n-1}$ \frac{n}{n-1}

$\textstyle \log n^2$ \log n^2

$\textstyle \ln e$ \ln e

Mods

Symbol Command

$9\equiv 3 \bmod{6}$ 9\equiv 3 \bmod{6}

$9\equiv 3 \pmod{6}$ 9\equiv 3 \pmod{6}

$9\equiv 3 \mod{6}$ 9\equiv 3 \mod{6}

$9\equiv 3\pod{6}$ 9\equiv 3 \pod{6}

Combinations

Similar questions