Math, asked by CyberBeast, 1 day ago


Evaluate

\begin{gathered} \rm \lim_{x \to \sqrt{10} } \: \frac{ \sqrt{7 - 2x} - ( \sqrt{5} - \sqrt{2} )}{ {x}^{2} - 10} \\ \end{gathered}\  \textless \ br /\  \textgreater \

Answers

Answered by user0888
40

\Huge\text{$-\dfrac{5\sqrt{2}+2\sqrt{5}}{60}$}

\Large\text{\underline{\underline{Question}}}

Find out the limiting value: -

\text{$\cdots\longrightarrow\displaystyle\lim_{x\to\sqrt{10}}\dfrac{\sqrt{7-2x}-(\sqrt{5}-\sqrt{2})}{x^{2}-10}$}.

\Large\text{\underline{\underline{Explanation}}}

Let's first see if this irrational expression is continuous.

We can see that -

\text{$\cdots\longrightarrow7-2\sqrt{10}=(\sqrt{5}-\sqrt{2})^{2}.$}

So, substituting x=\sqrt{10} results in \dfrac{0}{0}, which is an indeterminate form and discontinuous.

There exists a solution to radical expressions.

We solve indeterminate forms of radicals in the following technique: -

\text{$\cdots\longrightarrow\boxed{f(x)-g(x)=\dfrac{\{f(x)\}^{2}-\{g(x)\}^{2}}{f(x)+g(x)}.}$}

So, let's fix this indeterminate form.

\text{$\cdots\longrightarrow\boxed{\begin{aligned}&\dfrac{\sqrt{7-2x}-(\sqrt{5}-\sqrt{2})}{x^{2}-10}\\\\&=\dfrac{\sqrt{7-2x}-(\sqrt{5}-\sqrt{2})}{x^{2}-10}\times\dfrac{\sqrt{7-2x}+(\sqrt{5}-\sqrt{2})}{\sqrt{7-2x}+(\sqrt{5}-\sqrt{2})}\\\\&=\dfrac{(7-2x)-(\sqrt{5}-\sqrt{2})^{2}}{(x^{2}-10)\{\sqrt{7-2x}+(\sqrt{5}-\sqrt{2})\}}.\end{aligned}}$}

On further simplifying, -

\text{$\cdots\longrightarrow\boxed{\begin{aligned}&=\dfrac{(7-2x)-(7-2\sqrt{10})}{(x^{2}-10)\{\sqrt{7-2x}+(\sqrt{5}-\sqrt{2})\}}\\\\&=\dfrac{-2x+2\sqrt{10}}{(x^{2}-10)\{\sqrt{7-2x}+(\sqrt{5}-\sqrt{2})\}}\\\\&=\dfrac{-2(x-\sqrt{10})}{(x+\sqrt{10})(x-\sqrt{10})\{\sqrt{7-2x}+(\sqrt{5}-\sqrt{2})\}}\\\\&=-\dfrac{2}{(x+\sqrt{10})\{\sqrt{7-2x}+(\sqrt{5}-\sqrt{2})\}}.\end{aligned}}$}

Now, we can evaluate the limit as, -

\text{$\cdots\longrightarrow\boxed{\begin{aligned}\displaystyle&\lim_{x\to\sqrt{10}}-\dfrac{2}{(x+\sqrt{10})\{\sqrt{7-2x}+(\sqrt{5}-\sqrt{2})\}}.\\\\&=-\dfrac{2}{2\sqrt{10}\times\{\sqrt{7-2\sqrt{10}}+(\sqrt{5}-\sqrt{2})\}}\\\\&=-\dfrac{1}{\sqrt{10}\times2\times(\sqrt{5}-\sqrt{2})}\\\\&=-\dfrac{\sqrt{10}(\sqrt{5}+\sqrt{2})}{60}\\\\&=-\dfrac{5\sqrt{2}+2\sqrt{5}}{60}.\end{aligned}}$}

So,

\text{$\cdots\longrightarrow\boxed{\begin{aligned}\displaystyle&\lim_{x\to\sqrt{10}}\dfrac{\sqrt{7-2x}-(\sqrt{5}-\sqrt{2})}{x^{2}-10}=-\dfrac{5\sqrt{2}+2\sqrt{5}}{60}.\end{aligned}}$}

Answered by DEVILSTARK02
4

Answer:

This is the answer of your question :-

Attachments:
Similar questions