Math, asked by Anonymous, 14 days ago

Evaluate

 \bigstar \underline{  \boxed{\displaystyle{  \sf{ \red{ \int sec  \: x(sec  \: x+tan \:  x) dx}}} }} \bigstar

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given integral is

\displaystyle{ \sf{ \red{ \rm :\longmapsto\:\int sec \: x(sec \: x+tan \: x) dx}}}

\rm \:  =  \: \displaystyle\int\rm [  \: {sec}^{2}x \:  +  \: secx \: tanx \: ] \: dx

\rm \:  =  \: \displaystyle\int\rm  {sec}^{2}x \: dx \:  +  \: \displaystyle\int\rm secx \: tanx \: dx

\rm \:  =  \: tanx \:  +  \: secx \:  +  \: c

Hence,

\boxed{ \tt{ \: \displaystyle{ \sf{ \red{ \rm \:\int secx(secx+tan x) dx \:  =  \:tanx +  secx + c}}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know :-

 \red{\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}}

Answered by XxitzZBrainlyStarxX
24

Question:-

 \sf \int sec \: x(sec \: x + tan \: x)dx

Given:-

\sf I = \int   sec \: x(sec \: x + tan \: x)dx

To Find:

Evaluate:-

\sf I = \int   sec \: x(sec \: x + tan \: x)dx

Solution:-

We know that,

\sf I = \int   sec \: x(sec \: x + tan \: x)dx

 \longmapsto\sf I =  \int \: sec {}^{2} x \: dx +   \int \: sec x \: tanx \: dx

 \longmapsto\sf I = \int   tan \: x \:  + sec x \:  + c

Hence,Solved.

Answer:-

\underline{ \boxed{\displaystyle{ \sf{ \red{ \int sec \: x(sec \: x+tan \: x) dx = tanx \:  + secx \:  + c}}} }}

Similar questions