Math, asked by Anonymous, 1 month ago

Evaluate :-

 {\bold{ \sf{ \int \frac{x^{2} }{(x^{2} + 4)(x ^{2}  + 9) } dx}}}

Answers

Answered by senboni123456
43

Answer:

Step-by-step explanation:

We have,

\tt{I=\displaystyle\int\dfrac{x^2}{(x^2+4)(x^2+9)}\,dx}

\bold{\sf{\bullet\,\,Trick\,\,\,for\,\,\,solving\,\,\,Partial\,\,\,Fractions}}

Consider,

\sf{\dfrac{t}{(t+1)(t-2)}=\dfrac{A}{t+1}+\dfrac{B}{t-2}}

To find the coefficient A

Put t= - 1 in the given expression other than (t+1)

i.e.,

\sf{\dfrac{(-1)}{(t+1)((-1)-2)}=\dfrac{A}{t+1}}

\sf{\implies\,\dfrac{A}{t+1}=\dfrac{-1}{(t+1)(-3)}}

\sf{\implies\,\dfrac{A}{t+1}=\dfrac{1}{3(t+1)}}

So, A=1/3

In a similar way, to find B, put t=2 i.e., (t-2=0)

Using the above trick

\tt{I=\displaystyle\int\dfrac{-4}{(x^2+4)(-4+9)}\,dx+\int\dfrac{-9}{(x^2+9)(-9+4)}\,dx}

\tt{\implies\,I=\displaystyle\int\dfrac{-4}{(x^2+4)(5)}\,dx+\int\dfrac{-9}{(x^2+9)(-5)}\,dx}

\tt{\implies\,I=\displaystyle-\dfrac{4}{5}\int\dfrac{1}{x^2+4}\,dx+\dfrac{9}{5}\int\dfrac{1}{x^2+9}\,dx}

\tt{\implies\,I=\displaystyle-\dfrac{4}{5}\int\dfrac{1}{(x)^2+(2)^2}\,dx+\dfrac{9}{5}\int\dfrac{1}{(x)^2+(3)^2}\,dx}

\tt{\implies\,I=\displaystyle-\dfrac{4}{5}\cdot\dfrac{1}{2}\,tan^{-1}\left(\dfrac{x}{2}\right)+\dfrac{9}{5}\cdot\dfrac{1}{3}tan^{-1}\left(\dfrac{x}{3}\right)+C}

\tt{\implies\,I=\displaystyle-\dfrac{2}{5}\,tan^{-1}\left(\dfrac{x}{2}\right)+\dfrac{3}{5}tan^{-1}\left(\dfrac{x}{3}\right)+C}


BrainlyPopularman: Nice ♥️
Answered by mathdude500
53

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\rm  \frac{ {x}^{2} }{( {x}^{2} + 4)( {x}^{2}   + 9)} \: dx

can be rewritten as on multiply and divide by 5,

\rm \:  =  \: \dfrac{1}{5} \:\displaystyle\int\rm  \frac{ 5{x}^{2} }{( {x}^{2} + 4)( {x}^{2}   + 9)} \: dx

\rm \:  =  \: \dfrac{1}{5} \:\displaystyle\int\rm  \frac{ 9{x}^{2}  - 4 {x}^{2} }{( {x}^{2} + 4)( {x}^{2}   + 9)} \: dx

On adding and Subtracting 36,we get

\rm \:  =  \: \dfrac{1}{5} \:\displaystyle\int\rm  \frac{ 9{x}^{2}  - 4 {x}^{2}  + 36 - 36}{( {x}^{2} + 4)( {x}^{2}   + 9)} \: dx

\rm \:  =  \: \dfrac{1}{5} \:\displaystyle\int\rm  \frac{ (9{x}^{2}  +  36)  - (4{x}^{2} + 36)}{( {x}^{2} + 4)( {x}^{2}   + 9)} \: dx

\rm \:  =  \: \dfrac{1}{5} \:\displaystyle\int\rm  \frac{ 9({x}^{2} + 4)  - 4({x}^{2} + 9)}{( {x}^{2} + 4)( {x}^{2}   + 9)} \: dx

\rm \:  =  \: \dfrac{9}{5}\displaystyle\int\rm  \frac{dx}{ {x}^{2}  + 9}  -  \dfrac{4}{5}\displaystyle\int\rm  \frac{dx}{ {x}^{2}  + 4}

\rm \:  =  \: \dfrac{9}{5}\displaystyle\int\rm  \frac{dx}{ {x}^{2}  +  {3}^{2} }  -  \dfrac{4}{5}\displaystyle\int\rm  \frac{dx}{ {x}^{2}  +  {2}^{2} }

We know

 \\ \boxed{ \tt{ \: \displaystyle\int\rm  \frac{dx}{ {x}^{2}  +  {a}^{2}}  =  \frac{1}{a} {tan}^{ - 1} \frac{x}{a} + c \: }} \\

So, using this, we get

\rm \:  =  \: \dfrac{9}{5}  \times \dfrac{1}{3}  {tan}^{ - 1}\dfrac{x}{3} - \dfrac{4}{5}  \times \dfrac{1}{2}  {tan}^{ - 1}\dfrac{x}{2}  + c

\rm \:  =  \: \dfrac{3}{5}  {tan}^{ - 1}\dfrac{x}{3} -  \dfrac{2}{5}  {tan}^{ - 1}\dfrac{x}{2}  + c

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions