Math, asked by Anonymous, 18 days ago

Evaluate  \displaystyle \bf \lim_{ \bf x \to 0} \bf \dfrac{\sin ax + bx}{\sin bx + ax}

Answers

Answered by rk500raghvendra
17

\huge\bold{\color{aqua}{Solution :-}}

\quad\bold{\lim_{x\to 0}\frac{sin\:ax\:+\:bx}{sin\:bx\:+\:ax}}

\bold{\purple{\text{Dividing numerator and denominator by x}}}

\Rightarrow\bold{\lim_{x\to 0}\frac{\frac{sin\:ax\:+\:bx}{x}}{\frac{sin\:bx\:+\:ax}{x}}}

\Rightarrow\bold{\lim_{x\to 0}\frac{\frac{sin\:ax}{x}\:+\:b}{\frac{sin\:bx}{x}\:+\:a}}

\Rightarrow\bold{\lim_{x\to 0}\frac{a\bigg(\frac{sin\:ax}{ax}\bigg)\:+\:b}{b\bigg(\frac{sin\:bx}{bx}\bigg)\:+\:a}}

\Rightarrow\bold{\frac{a\bigg(\lim_{x\to 0}\frac{sin\:ax}{ax}\bigg)\:+\:b}{b\bigg(\lim_{x\to 0}\frac{sin\:bx}{bx}\bigg)\:+\:a}}

\Rightarrow\bold{\frac{a(1)+b}{b(1)+a}\qquad\qquad\therefore\orange{\small{\lim_{A\to 0}\frac{sin\:A}{A}=1}}}

\Rightarrow\bold{\frac{a+b}{a+b}}

\Rightarrow\bold{\frac{\red{\cancel{\blue{a+b}}}^{\green{\:\:1}}}{\red{\cancel{\blue{a+b}}}^{\green{\:\:1}}}}

\Rightarrow\bold{\frac{1}{1}}

\Rightarrow\bold{\green{\boxed{\pink{1}}}}

Answered by XxitzZBrainlyStarxX
8

Question:-

 \sf \: Evaluate:  \sf \lim_{ x \to 0}  \sf\dfrac{sin  \: ax + bx}{ sin  \: bx + ax}

Given:-

 \sf \lim_{ x \to 0}  \sf\dfrac{\sin ax + bx}{\sin bx + ax}

Solution:-

We have:

 \sf \lim_{ x \to 0}  \sf\dfrac{sin \: ax + bx}{sin \: bx + ax}

Dividing numerator and denominator by x, we get;

 \sf  \large\lim_{ x \to 0} \:  \frac{ \frac{sin \: ax}{x} + b }{a +  \frac{sin \: bx}{x} }   \sf \large = \lim_{ x \to 0} \:  \frac{ \frac{sin \: ax}{ax}  \:  \times a + b}{a + ( \frac{sin \: bx}{bx} \times b )}

 \sf \large =  \frac{a (\lim_{ x \to 0}  \: \frac{sin \: ax}{ax}) + b }{a + b(\lim_{ x \to 0} \:  \frac{sin \: bx}{bx} )}

 \sf \large =  \frac{a(1) + b}{a + b(1)}

 \sf \large = {{ \cancel{ \frac{a + b}{a + b}}}}

 \sf \large = 1

Answer:-

 \sf \:  \red{Hence,  \sf \lim_{ x \to 0}  \sf\dfrac{\sin ax + bx}{\sin bx + ax} = 1.}

Hope you have satisfied.

Similar questions