Math, asked by Anonymous, 1 year ago

Evaluate :


\displaystyle\lim_{x \to 0}\: {(1+x )}^{\frac{1}{x}}

✔️✔️ quality answer needed✔️✔️

❌❌NO SPAMMING❌❌​

Answers

Answered by rahman786khalilu
5

Hope this solution will help you mark as brainliest answer

Attachments:

rahman786khalilu: mark as brainliest bro
Answered by generalRd
5

ANSWER

e^{1} or e

Step by step Explanation

We have ->

\displaystyle\lim_{x \rightarrow 0}\: {(1+x )}^{\frac{1}{x}}

 Now \:this \:is \:of \:the\: form\: (\rightarrow )^{\rightarrow \infty}

 [Since \displaystyle\lim_{x \rightarrow a}{f(x)}^{g(x)} = e^{\displaystyle\lim_{x\rightarrow 0} }\:(f(x) - 1)g(x)]

Now, we have →

 e^{\displaystyle\lim_{x \rightarrow 0} }(1 + x - 1)\dfrac{1}{x}

\implies e^{\displaystyle\lim_{x \rightarrow 0} }(x)\dfrac{1}{x}

Now we know that

 x \times \dfrac{1}{x} = 1

On putting this in the expression we get→

\implies e^{\displaystyle\lim_{x \rightarrow 0} (1) }

\implies e^{1}

This is equal to e.

Hence the value if the expression is e^{1} or e.


Anonymous: great thanks bro❤️
generalRd: welcome
Similar questions