Math, asked by Anonymous, 1 year ago

Evaluate :


\displaystyle\lim_{x \to 0}\: {(Cos x)}^{\frac{1}{x^2}}

✔️✔️ quality answer needed✔️✔️

❌❌NO SPAMMING❌❌​

Answers

Answered by brunoconti
2

Answer:

Step-by-step explanation:

Attachments:

Anonymous: use Newton's Leibnitz theorem
Anonymous: its in the form of 1 to the power infinity
brunoconti: i added Another solution without Maclaurin expansion.
brunoconti: i dont doubt you. i used Three different methods and i get the same answer
brunoconti: weird
Anonymous: means mine answer is wrong
Anonymous: no problem... i will check it once ;)
Anonymous: thanks a lot for so hard work ✔️❤️
brunoconti: i may be wrong but i doubt it
brunoconti: anytime
Answered by generalRd
5

ANSWER

 e^{\frac{-1}{2} }

Step By Step Explanation

\displaystyle\lim_{x \to 0}\: {(Cos x)}^{\frac{1}{x^2}}

Here we know that >>

It is of (\rightarrow 1)^{ \rightarrow\infty} form.

Now we get ->

 \implies e^{ \displaystyle \lim_{x \to 0}\: \left(cos x - 1)(\dfrac{1}{x^{2} }\right) }

\implies e^{ \displaystyle \lim_{x \to 0}\: \dfrac{-2Sin^{2} \dfrac{x}{2} }{x^{2}}}

\implies e^{ \displaystyle \lim_{x \to 0}\: \dfrac{-2Sin^{2} \dfrac{x}{2} }{4.\left(\dfrac{x}{2}\right)^{2}}}

\implies e^{ \displaystyle \lim_{x \to 0}\: \dfrac{1}{2}\left(\dfrac{Sin\dfrac{x}{2} }{\dfrac{x}{2}} \right)^{2}}

\implies e^{\frac{-1}{2} \times 1}

\implies e^{\frac{-1}{2} }

Hence,on evaluating  \displaystyle \lim_{x \to 0}\: {(Cos x)}^{\frac{1}{x^2}} we get  e^{\frac{-1}{2} }.


generalRd: no no
generalRd: its ok
Anonymous: yeahh .. i saw it ;)
generalRd: ok
Anonymous: great thanks
generalRd: anytime wait solving more
generalRd: done bro
Anonymous: perfect ✔️✔️
Anonymous: ❤️
generalRd: thanks
Similar questions