Math, asked by BrainlyTurtle, 4 months ago

Evaluate

\displaystyle \lim_{x \to 0} \:  \:  \frac{tan \: x  \: + \: 4tan2x  \:   -   \: 3tan3x   }{ {x}^{2}tan \: x }

Answers

Answered by SparklingBoy
64

Solution

\displaystyle \lim_{x \to 0} \: \: \frac{tan \: x \: + \: 4tan2x \: - \: 3tan3x }{ {x}^{2}tan \: x } \\  \\  = \displaystyle \lim_{x \to 0} \: \: \frac{tan \: x \: + \: 4( \dfrac{2tan \: x}{1 -  {tan}^{2 } \: x } )\: - \: 3( \dfrac{3tan \: x \:  -  \:  {tan}^{3}  \: x}{1 - 3 {tan}^{2} x})  }{ {x}^{2}tan \: x } \\  \\  = \displaystyle \lim_{x \to 0}  \dfrac{1 +  \dfrac{8}{1 -  {tan}^{2} x } -  \dfrac{9 - 3 {tan}^{2}x }{1 - 3{tan}^{2}x}  }{ {x}^{2} }  \\  \\  = \displaystyle \lim_{x \to 0} \frac{(1  - {tan}^{2}x)(1 - 3 {tan}^{2}x) + 8(1 - 3{tan}^{2}x) - (9 - 3 {tan}^{2}x)(1 - {tan}^{2}x)}{ {x}^{2} (1 -{tan}^{2}x)(1 - 3 {tan}^{2}x) } \\  \\  = \displaystyle \lim_{x \to 0} \frac{1 - 4 {tan}^{2}x + 3{tan}^{4}x + 8 - 24 {tan}^{2}x - 9 + 12{tan}^{2}x - 3 {tan}^{4}x }{ {x}^{2} (1 -{tan}^{2}x)(1 - 3 {tan}^{2}x)} \\  \\  = \displaystyle \lim_{x \to 0} \:  \frac{ - 16{tan}^{2}x}{ {x}^{2} (1 -{tan}^{2}x)(1 - 3 {tan}^{2}x)} \\  \\  = - 16 \:  \displaystyle \lim_{x \to 0} \: ( \frac{tan \: x}{x}) {}^{2}  \times  \frac{1}{ (1 -{tan}^{2}x)(1 - 3 {tan}^{2}x)}  \\  \\  =  - 16 \times  {1}^{2}  \times  \frac{1}{(1 - 0)(1 - 0)}  \\  \\  =  - 16 \\  \\

Which is the required Answer.

Answered by NewtonBaba420
42

See the step by step Explanation of this question

\displaystyle \lim_{x \to 0} \: \: \frac{tan \: x \: + \: 4tan2x \: - \: 3tan3x }{ {x}^{2}tan \: x } \\  \\  = \displaystyle \lim_{x \to 0} \: \: \frac{tan \: x \: + \: 4( \dfrac{2tan \: x}{1 -  {tan}^{2 } \: x } )\: - \: 3( \dfrac{3tan \: x \:  -  \:  {tan}^{3}  \: x}{1 - 3 {tan}^{2} x})  }{ {x}^{2}tan \: x } \\  \\  = \displaystyle \lim_{x \to 0}  \dfrac{1 +  \dfrac{8}{1 -  {tan}^{2} x } -  \dfrac{9 - 3 {tan}^{2}x }{1 - 3{tan}^{2}x}  }{ {x}^{2} }  \\  \\  = \displaystyle \lim_{x \to 0} \frac{(1  - {tan}^{2}x)(1 - 3 {tan}^{2}x) + 8(1 - 3{tan}^{2}x) - (9 - 3 {tan}^{2}x)(1 - {tan}^{2}x)}{ {x}^{2} (1 -{tan}^{2}x)(1 - 3 {tan}^{2}x) } \\  \\  = \displaystyle \lim_{x \to 0} \frac{1 - 4 {tan}^{2}x + 3{tan}^{4}x + 8 - 24 {tan}^{2}x - 9 + 12{tan}^{2}x - 3 {tan}^{4}x }{ {x}^{2} (1 -{tan}^{2}x)(1 - 3 {tan}^{2}x)} \\  \\  = \displaystyle \lim_{x \to 0} \:  \frac{ - 16{tan}^{2}x}{ {x}^{2} (1 -{tan}^{2}x)(1 - 3 {tan}^{2}x)} \\  \\  = - 16 \:  \displaystyle \lim_{x \to 0} \: ( \frac{tan \: x}{x}) {}^{2}  \times  \frac{1}{ (1 -{tan}^{2}x)(1 - 3 {tan}^{2}x)}  \\  \\  =  - 16 \times  {1}^{2}  \times  \frac{1}{(1 - 0)(1 - 0)}  \\  \\  =  - 16 \\  \\

Similar questions