Math, asked by Anonymous, 1 year ago

Evaluate :

\displaystyle\lim_{x \to \infty}\: {(\frac{x^2+2x-1}{x^2-x-4})}^{(2x+1)}

✔️✔️ quality answer needed✔️✔️

❌❌NO SPAMMING❌❌​

Answers

Answered by brunoconti
4

Answer:

Step-by-step explanation:

Attachments:

Anonymous: great thanks ✔️✔️❤️
Answered by generalRd
7

ANSWER

e^{6}

Step By Step Explanation

\displaystyle\lim_{x \to \infty}\: {(\dfrac{x^2+2x-1}{x^2-x-4}) } ^{(2x+1)}

(\rightarrow 1) ^{\rightarrow\infty} form.

 \implies e^{ \displaystyle \lim_{x \to \infty}\: (\dfrac{x^{2} + 2x -1}{x^{2} - 4 - x } -1)(2x + 1) }

 \implies e^{ \displaystyle \lim_{x \to \infty}\: (\dfrac{3x + 3}{x^{2} - 4 - x} -1)(2x + 1) }

Also we know that >>

 \displaystyle\lim_{x \to \infty}\:(\dfrac{1}{x}) = 0

Now we get ->

 \implies e^{\displaystyle \lim_{x \to \infty}\: \dfrac{ (x^{2}) (3-\dfrac{3}{x} )(2+ \dfrac{1}{x}) } { (x^{2})(1 - \dfrac{1}{x} - \dfrac{4} {x^{2} })}}

\implies e^{\frac{(3-0)(2+0) }{1-0-0} }

 \implies e^{6}

Hence ,the evaluation of  \displaystyle\lim_{x \to \infty}\: {(\frac{x^2+2x-1}{x^2-x-4})}^ {(2x+1)} is e^{6}.


generalRd: I got e^{6}
Anonymous: yeahh... i am checking yours ...
generalRd: Can you help me ?
generalRd: with the latex
generalRd: I am not getting it
Anonymous: in the second step
Anonymous: -1 shiuld nit be there
Anonymous: as in first step you have already written
generalRd: ok
generalRd: thanks
Similar questions