Math, asked by Anonymous, 1 year ago

Evaluate :


\displaystyle\lim_{x\to\zero}\: {(1+x )}^{\frac{1}{x}}


brunoconti: x tends to 0?
Anonymous: let it be deleted
Anonymous: check on my recent
Anonymous: that is right

Answers

Answered by brunoconti
1

Answer:

Step-by-step explanation:

is this enough or do u want proof for the standard limit as well

Attachments:

Anonymous: thanks :)
Answered by generalRd
1

ANSWER

e^{1} or e.

Step By Step Explanation

\displaystyle\lim_{x \rightarrow 0}\: {(1+x )}^{\frac{1}{x}}

(\rightarrow 1)^{\rightarrow\infty}

Since = \displaystyle\lim_{x\rightarrow a}\:{f(x)}^{g(x)} = e^{ \displaystyle\lim_{x\rightarrow a}\:(f(x)-1)g(x) }

Now we have=>

\implies e^{\displaystyle\lim_{x\rightarrow 0}(x + 1 - 1)\dfrac{1}{x} }

\implies e^{\displaystyle\lim_{x\rightarrow 0}(x \times \dfrac{1}{x}) }

\implies e^{\displaystyle\lim_{x\rightarrow 0}(1) }

\implies e^{1}

Hence the evaluation of \displaystyle\lim_{x\rightarrow 0}\: {(1+x )}^{\frac{1}{x}} is \implies e^{1}.


Anonymous: perfect ✔️✔️ genius
generalRd: thanks bro
Similar questions