Math, asked by ToughQuestioner, 9 days ago


Evaluate  \displaystyle \rm \lim _ {n\to \infty } \dfrac{1}{1 + {n}^{2} } + \dfrac{2}{2 + {n}^{2} } + \cdots + \dfrac{n}{n + {n}^{2} }

Answers

Answered by amansharma264
29

EXPLANATION.

\sf \implies \displaystyle  \lim_{n \to \infty} \bigg[ \frac{1}{1 + n^{2} } + \frac{2}{2 + n^{2} } + . . . . . + \frac{n}{n + n^{2} } \bigg]

As we know that,

Concept of sandwich theorem.

⇒ If g(x) ≤ f(x) ≤ h(x)  ∨ x ∈(a - h, a + h).

\sf \implies \displaystyle  \lim_{x \to a} g(x) =  \lim_{x \to a} h(x) = L

\sf \implies \displaystyle  \lim_{x \to a} f(x) = L

Using this concept in the equation, we get.

\sf \implies \displaystyle  \lim_{n \to \infty} g(n) = \frac{1}{n + n^{2} } + \frac{2}{n + n^{2} } + . . . . . + \frac{n}{n + n^{2} }

\sf \implies \displaystyle  \lim_{n \to \infty} g(n) = \frac{n(n + 1)}{2(n + n^{2} )}

\sf \implies \displaystyle   g(n) = \frac{(n^{2} + n)}{2(n + n^{2} )} = \frac{1}{2}

\sf \implies \displaystyle  \lim_{n \to \infty} h(n) = \frac{1}{1 + n^{2} } + \frac{2}{1 + n^{2} } + . . . . . + \frac{n}{1 + n^{2} }

\sf \implies \displaystyle  \lim_{n \to \infty} h(n) = \frac{n(n + 1)}{2(1 + n^{2} )}

\sf \implies \displaystyle  \lim_{n \to \infty} h(n) = \frac{(n^{2}+ n) }{2(1 + n^{2})  }

\sf \implies \displaystyle  \lim_{n \to \infty} h(n) = \frac{n^{2}(1 + 1/n) }{2n^{2}(1/n^{2} + 1) } = \frac{1}{2}

As we can see that,

\sf \implies \displaystyle  \lim_{n \to \infty} g(n) = \lim_{n \to \infty} h(n) = \frac{1}{2}

\sf \implies \displaystyle \boxed{ \lim_{n \to \infty} f(n) = \frac{1}{2} }


mathdude500: Awesome
amansharma264: Thanku so much
Answered by Anonymous
66

P_n =  \dfrac{1}{1 +  {n}^{2} }  +  \dfrac{2}{2 +  {n}^{2} }  +  \cdots +  \dfrac{n}{n +  {n}^{2} } \\\\

P_n  <   \dfrac{1}{1 +  {n}^{2} }  +  \dfrac{2}{2 +  {n}^{2} }  +  \cdots +  \dfrac{n}{n +  {n}^{2} } \\\\

 :  \longmapsto  \dfrac{1}{1 +  {n}^{2} }  (1 + 2 +  3 + \cdots +  n) \\\\

  : \longmapsto  \dfrac{n(n + 1)}{2 \big(1 +  {n}^{2} \big)}  \\\\

Also,

P_n   >   \dfrac{1}{1 +  {n}^{2} }  +  \dfrac{2}{2 +  {n}^{2} }  +   \dfrac{3}{3 +  {n}^{2} } \cdots +  \dfrac{n}{n +  {n}^{2} } \\\\

  : \longmapsto  \dfrac{n(n + 1)}{2 \big(n +  {n}^{2} \big) }   < P_n < \dfrac{n(n + 1)}{2 \big(1 +  {n}^{2} \big)}\\\\

  : \longmapsto  \displaystyle \lim_{n \to \infty }  \dfrac{n(n + 1)}{2 \big(n +  {n}^{2} \big)}  < \lim_{x \to \infty }P_n <   \lim_{x \to \infty }{\dfrac{n(n + 1)}{2 \big(1 +  {n}^{2} \big)}} \\\\

  : \longmapsto  \displaystyle \lim_{n \to \infty }  \dfrac{1 \bigg(1 +  \dfrac{1}{n}  \bigg)}{2 \bigg( \dfrac{1}{n}  +  1 \bigg)}  < \lim_{n \to \infty }P_n <   \lim_{n \to \infty }\dfrac{1 \bigg(1 +  \dfrac{1}{n}  \bigg)}{2 \bigg( \dfrac{1}{n^{2} } +  1 \bigg)}  \\\\

 :  \longmapsto \displaystyle \dfrac{1}{2}  < \lim_{n \to \infty }P_n < \dfrac{1}{2} \\  \\

 :  \longmapsto \displaystyle \lim_{n \to \infty }P_n  = \dfrac{1}{2} \\  \\

Similar questions