Math, asked by uranium77, 7 months ago

Evaluate:-
 \displaystyle \sf \int \dfrac{ \sqrt{x^{2}  + a^{2} } }{x} dx

Answers

Answered by Anonymous
116

SOLUTION:-

⠀⠀⠀⠀

We have

 \displaystyle \bf \int \dfrac{ \sqrt{x^{2} + a^{2} } }{x} dx

⠀⠀⠀⠀

 \implies\displaystyle \sf \int \dfrac{ \sqrt{x^{2} + a^{2} }  \sqrt{x^{2}  + a ^{2} } }{x \sqrt{x {}^{2} + a ^{2}  } } dx

⠀⠀⠀

 \implies \displaystyle \sf \int \dfrac{x^{2}  + {a}^{2} }{x \sqrt{ {x}^{2}+{a}^{2}} } dx

⠀⠀⠀⠀

 \implies \displaystyle \sf \int \dfrac{x^{2} dx}{x \sqrt{ {x}^{2}  +  {a}^{2} } }  +  \int\dfrac{a^{2} dx}{x \sqrt{ {x}^{2} +  {a}^{2} }}

⠀⠀⠀⠀

 \implies \displaystyle \sf \dfrac{1}{2} \int(2x )( {x}^{2}  +  {a}^{2} )^{ -  \frac{1 }{2} } dx +  {a}^{2}  \int \frac{dx}{x \sqrt{ {x}^{2} +  {a}^{2}  } }

⠀⠀⠀⠀

  \implies \displaystyle \sf \frac{1}{2}  \bigg \{ \sf \dfrac{( {x}^{2} +  {a}^{2}  ) ^{ \frac{1}{2} } }{ \dfrac{1}{2} } \bigg \} + a^{2} I_{1} + c....(1)

⠀⠀⠀⠀

Where

⠀⠀⠀⠀

 \displaystyle  \sf I_{1} =  \int \dfrac{dx}{x \sqrt{ {x}^{2} + {a}^{2}  } }

✶Put x=1/t ⇛dx=-1 /t² dt

⠀⠀⠀⠀

 \implies \displaystyle \sf \int \frac{ -  \dfrac{1}{{t}^{2}}dt }{ \dfrac{1}{t} \sqrt{ \dfrac{1 }{ {t}^{2}}  +  {a}^{2} }  }

⠀⠀⠀⠀

 \implies \displaystyle \sf \int \dfrac{ - dt}{ \sqrt{1 +  {a}^{2}  {t}^{2} } }

⠀⠀⠀⠀

 \implies \displaystyle \sf \frac{1}{a}  \int \dfrac{dt}{ \sqrt{ {t}^{2}  +  \dfrac{1}{ {a}^{2} } }  }

⠀⠀⠀⠀

 \implies \displaystyle \sf -  \frac{1}{a} log \bigg(t +  \sqrt{ {t}^{2} +  \dfrac{1}{ {a}^{2} }  }  \bigg)

⠀⠀⠀⠀

 \implies \displaystyle \sf -  \frac{1}{a} log \bigg( \frac{1}{x} +    \sqrt{  \frac{1}{ {x}^{2} } +  \dfrac{1}{ {a}^{2} }  }  \bigg)

⠀⠀⠀⠀

 \implies \displaystyle \sf -  \frac{1}{a} log \bigg( \frac{a +  \sqrt{ {x}^{2}  +  {a}^{2} } }{ax}   \bigg)....(2)

⠀⠀⠀⠀

From (1) and (2) we find that given integral

 \implies \bf\sqrt{ {x}^{2}  +  {a}^{2} }  - a \: log \bigg( \dfrac{a +  \sqrt{ {x}^{2}  +  {a}^{2} } }{xa}  \bigg) + C

_________________________

Answered by PD626471
85

SOLUTION:-

⠀⠀⠀⠀

We have

\displaystyle \bf \int \dfrac{ \sqrt{x^{2} + a^{2} } }{x} dx

⠀⠀⠀⠀

\implies\displaystyle \sf \int \dfrac{ \sqrt{x^{2} + a^{2} } \sqrt{x^{2} + a ^{2} } }{x \sqrt{x {}^{2} + a ^{2} } } dx</p><p>

⠀⠀⠀

\implies \displaystyle \sf \int \dfrac{x^{2} + {a}^{2} }{x \sqrt{ {x}^{2}+{a}^{2}} } </p><p>

⠀⠀⠀⠀

\implies \displaystyle \sf \int \dfrac{x^{2} dx}{x \sqrt{ {x}^{2} + {a}^{2} } } + \int\dfrac{a^{2} dx}{x \sqrt{ {x}^{2} + {a}^{2} }}</p><p>

⠀⠀⠀⠀

\implies \displaystyle \sf \dfrac{1}{2} \int(2x )( {x}^{2} + {a}^{2} )^{ - \frac{1 }{2} } dx + {a}^{2} \int \frac{dx}{x \sqrt{ {x}^{2} + {a}^{2} } }

⠀⠀⠀⠀

\implies \displaystyle \sf \frac{1}{2} \bigg \{ \sf \dfrac{( {x}^{2} + {a}^{2} ) ^{ \frac{1}{2} } }{ \dfrac{1}{2} } \bigg \} + a^{2} I_{1} + c....(1)

⠀⠀⠀⠀

Where

⠀⠀⠀⠀

\displaystyle \sf I_{1} = \int \dfrac{dx}{x \sqrt{ {x}^{2} + {a}^{2} } } </p><p>

✶Put x=1/t ⇛dx=-1 /t² dt

⠀⠀⠀⠀

\implies \displaystyle \sf \int \frac{ - \dfrac{1}{{t}^{2}}dt }{ \dfrac{1}{t} \sqrt{ \dfrac{1 }{ {t}^{2}} + {a}^{2} } }

⠀⠀⠀⠀

\implies \displaystyle \sf \int \dfrac{ - dt}{ \sqrt{1 + {a}^{2} {t}^{2} } }

⠀⠀⠀⠀

\implies \displaystyle \sf \frac{1}{a} \int \dfrac{dt}{ \sqrt{ {t}^{2} + \dfrac{1}{ {a}^{2} } } }

⠀⠀⠀⠀

\implies \displaystyle \sf - \frac{1}{a} log \bigg(t + \sqrt{ {t}^{2} + \dfrac{1}{ {a}^{2} } } \bigg)

⠀⠀⠀⠀

\implies \displaystyle \sf - \frac{1}{a} log \bigg( \frac{1}{x} + \sqrt{ \frac{1}{ {x}^{2} } + \dfrac{1}{ {a}^{2} } } \bigg)

⠀⠀⠀⠀

\implies \displaystyle \sf - \frac{1}{a} log \bigg( \frac{a + \sqrt{ {x}^{2} + {a}^{2} } }{ax} \bigg)....(2)</p><p>

⠀⠀⠀⠀

From (1) and (2) we find that given integral

\implies \bf\sqrt{ {x}^{2} + {a}^{2} } - a \: log \bigg( \dfrac{a + \sqrt{ {x}^{2} + {a}^{2} } }{xa} \bigg)

_________________________

Similar questions