Math, asked by saryka, 1 month ago

Evaluate:

\displaystyle\sf{\sum_{n=1}^{\infty}\dfrac{1}{n^2+5n+6}}

Answers

Answered by mathdude500
80

\large\underline{\sf{Solution-}}

 \displaystyle\rm :\longmapsto\:\sum_{n=1}^{\infty}\dfrac{1}{ {n}^{2}  + 5n + 6}

\displaystyle \: \rm \:  = \:\sum_{n=1}^{\infty}\dfrac{1}{ {n}^{2}  + 3n  + 2n+ 6}

\displaystyle \: \rm \:  = \:\sum_{n=1}^{\infty}\dfrac{1}{n(n  + 3) +2(n+ 3)}

\displaystyle \: \rm \:  = \:\sum_{n=1}^{\infty}\dfrac{1}{(n  + 3)(n+ 2)}

 \displaystyle\: \rm \:  = \:\sum_{n=1}^{\infty}\dfrac{3 - 2}{(n  + 3)(n+ 2)}

 \displaystyle\: \rm \:  = \:\sum_{n=1}^{\infty}\dfrac{3 - 2 + n - n}{(n  + 3)(n+ 2)}

 \displaystyle\: \rm \:  = \:\sum_{n=1}^{\infty}\dfrac{(n + 3) - (n + 2)}{(n  + 3)(n+ 2)}

\displaystyle\: \rm \:  = \:\sum_{n=1}^{\infty}\bigg(\dfrac{(n + 3)}{(n + 3)(n + 2)}  - \dfrac{(n + 2)}{(n + 3)(n + 2)}  \bigg)

\displaystyle\: \rm \:  = \:\sum_{n=1}^{\infty}\bigg(\dfrac{1}{n + 2}  - \dfrac{1}{n + 3}  \bigg)

\: \rm \:  = \bigg(\dfrac{1}{3}  - \dfrac{1}{4}\bigg) + \bigg(\dfrac{1}{4}  - \dfrac{1}{5} \bigg) + \bigg(\dfrac{1}{5}  - \dfrac{1}{6}  \bigg)  +  -  -  -  -

\: \rm \:  = \:\dfrac{1}{3}

Hence,

\purple{ \displaystyle\bf :\longmapsto\:\sum_{n=1}^{\infty}\dfrac{1}{ {n}^{2}  + 5n + 6}  = \dfrac{1}{3} }

Additional Information :-

\rm :\longmapsto\: log(1 + x)  = \sum_{n=1}^{\infty}\dfrac{ {( - 1)}^{n - 1}  {x}^{n} }{n}

\rm :\longmapsto\:  - log(1  -  x)  = \sum_{n=1}^{\infty}\dfrac{{x}^{n} }{n}

\rm :\longmapsto\: log(2) = 1 - \dfrac{1}{2}  + \dfrac{1}{3}  - \dfrac{1}{4}  +  -  -  -  -

Similar questions