Math, asked by AnanyaBaalveer, 17 days ago

Evaluate:-
 \frac{ \cos( \beta ) -  \sin( \beta ) + 1 }{ \cos( \beta ) \sin( \beta )   - 1}  = co\sec( \beta )  + \cot( \beta )
Only moderator like Mathdude​

Answers

Answered by mathdude500
8

Appropriate Question :- Prove that

\rm \: \frac{ \cos\beta - \sin\beta + 1 }{ \cos \beta  + \sin\beta  - 1} = cosec \beta  + cot \beta  \\

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: \frac{ \cos\beta  - \sin\beta  + 1 }{ \cos\beta  + \sin\beta - 1} \\

can be rewritten as

\rm \:  =  \: \dfrac{\dfrac{cos\beta }{sin\beta }  - \dfrac{sin\beta }{sin\beta }  + \dfrac{1}{sin\beta } }{ \:  \:  \: \dfrac{cos\beta }{sin\beta } +  \dfrac{sin\beta }{sin\beta } - \dfrac{1}{sin\beta } \:  \:  \: }  \\

\rm \:  =  \: \dfrac{cot\beta  - 1 + cosec\beta }{cot\beta  + 1 - cosec\beta }  \\

can be re-arranged as

\rm \:  =  \: \dfrac{(cot\beta + cosec\beta) - 1 }{cot\beta  + 1 - cosec\beta }  \\

\rm \:  =  \: \dfrac{(cot\beta + cosec\beta) - ( {cosec}^{2}\beta  -  {cot}^{2}\beta)}{cot\beta  + 1 - cosec\beta }  \\

\rm \:  =  \: \dfrac{(cot\beta + cosec\beta) - ( cosec\beta  + cot\beta )(cosec\beta  - cot\beta )}{cot\beta  + 1 - cosec\beta }  \\

\rm \:  =  \: \dfrac{(cosec\beta + cot\beta)\bigg[1 - (cosec\beta  - cot\beta )\bigg]}{cot\beta  + 1 - cosec\beta }  \\

\rm \:  =  \: \dfrac{(cosec\beta + cot\beta)\bigg[1 - cosec\beta  +  cot\beta \bigg]}{cot\beta  + 1 - cosec\beta }  \\

\rm \:  =  \: cosec\beta  + cot\beta  \\

Hence,

\rm\implies \boxed{{\rm \: \frac{ \cos\beta - \sin\beta + 1 }{ \cos\beta + \sin\beta - 1} = cosec \beta  + cot \beta \: }}  \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \: \frac{1}{sinx} = cosecx \: }} \\

\boxed{ \rm{ \: \frac{cosx}{sinx} = cotx \: }} \\

\boxed{ \rm{ \: {cosec}^{2}x -  {cot}^{2}x = 1 \: }} \\

\boxed{ \rm{ \: {x}^{2} -  {y}^{2} = (x + y)(x - y) \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(90 \degree - x) = cosx}\\ \\ \bigstar \: \bf{cos(90 \degree - x) = sinx}\\ \\ \bigstar \: \bf{tan(90 \degree - x) = cotx}\\ \\ \bigstar \: \bf{cot(90 \degree - x) = tanx}\\ \\ \bigstar \: \bf{cosec(90 \degree - x) = secx}\\ \\ \bigstar \: \bf{sec(90 \degree - x) = cosecx}\\ \\ \bigstar \: \bf{ {sin}^{2}x +  {cos}^{2}x = 1 } \\ \\ \bigstar \: \bf{ {sec}^{2}x -  {tan}^{2}x = 1  }\\ \\ \bigstar \: \bf{ {cosec}^{2}x -  {cot}^{2}x = 1 }\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions