CBSE BOARD XII, asked by CadburyDarling, 5 hours ago

Evaluate:- \huge \displaystyle \sf \int \dfrac{ \sqrt{x^{2} + a^{2} } }{x} dx

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

The given integral is

\rm :\longmapsto\:\displaystyle \rm \int \dfrac{ \sqrt{x^{2} + a^{2} } }{x} dx

can be rewritten as

\rm \:  =  \:  \: \displaystyle \rm \int \dfrac{ \sqrt{x^{2} + a^{2} } }{ {x}^{2} } \:  x \: dx

To evaluate this integral, we use method of Substitution,

 \red{\rm :\longmapsto\:Put \:  \sqrt{ {x}^{2}  +  {a}^{2} } = y}

On squaring both sides, we get

 \red{\rm :\longmapsto \: {x}^{2}  +  {a}^{2} =  {y}^{2} }

 \red{\rm :\longmapsto \: {2x}dx =  2{y}dy}

 \red{\rm :\longmapsto \: {x}dx =  {y}dy}

So, on substituting the values, we have

\rm \:  =  \:  \: \displaystyle \rm \int \dfrac{ y }{ {y}^{2}  -  {a}^{2} } \:  y \: dy

\rm \:  =  \:  \: \displaystyle \rm \int \dfrac{ {y}^{2} }{ {y}^{2}  -  {a}^{2} }  \: dy

\rm \:  =  \:  \: \displaystyle \rm \int \dfrac{ {y}^{2} -  {a}^{2}  +  {a}^{2} }{ {y}^{2}  -  {a}^{2} }  \: dy

\rm \:  =  \:  \: \displaystyle \rm \int \dfrac{ {y}^{2} -  {a}^{2}}{ {y}^{2}  -  {a}^{2} }  \: dy \:  +  \: \displaystyle \rm \int \dfrac{{a}^{2}}{ {y}^{2}  -  {a}^{2} }  \: dy

\rm \:  =  \:  \: \displaystyle \rm \int 1\: dy \:  +  {a}^{2}  \: \displaystyle \rm \int \dfrac{1}{ {y}^{2}  -  {a}^{2} }  \: dy

\rm \:  =  \:  \: y +  {a}^{2}\dfrac{1}{2a} log \bigg |\dfrac{y - a}{y + a} \bigg|  + c

\rm \:  =  \:  \: y +  \dfrac{a}{2} log \bigg |\dfrac{y - a}{y + a} \bigg|  + c

\rm \:  =  \:  \:  \sqrt{ {x}^{2}  +  {a}^{2} }  +  \dfrac{a}{2} log \bigg |\dfrac{ \sqrt{ {x}^{2}  +  {a}^{2} }  - a}{ \sqrt{ {x}^{2}  +  {a}^{2} }  + a} \bigg|  + c

Additional Information :-

\boxed{ \rm \: \displaystyle \rm \int  \frac{dx}{ {x}^{2} +{a}^{2}} =  \frac{1}{a} {tan}^{ -1 } \frac{x}{a} \:  +  \: c}

\boxed{ \rm \: \displaystyle \rm \int  \frac{dx}{  \sqrt{{x}^{2} +{a}^{2}}} =  log |x +  \sqrt{ {x}^{2}  +  {a}^{2} } | \:  +  \: c }

\boxed{ \rm \: \displaystyle \rm \int  \frac{dx}{  \sqrt{{x}^{2} - {a}^{2}}} =  log |x +  \sqrt{ {x}^{2} - {a}^{2} } | \:  +  \: c }

\boxed{ \rm \: \displaystyle \rm \int  \frac{dx}{ \sqrt{ {a}^{2}  -  {x}^{2} } } =  {sin}^{ - 1} \frac{x}{a}  \:  +  \: c}

\boxed{ \rm \: \displaystyle \rm \int  \frac{dx}{ {x}^{2}  -  {a}^{2} } = \dfrac{1}{2a} log \bigg |\dfrac{x - a}{x + a} \bigg|  + c }

\boxed{ \rm \: \displaystyle \rm \int  \frac{dx}{ {a}^{2}  -  {x}^{2} } = \dfrac{1}{2a} log \bigg |\dfrac{a + x}{a - x} \bigg|  + c }

Similar questions