Math, asked by ysiraj123, 11 months ago

Evaluate \int 2^{x+1} -5^{x-1} /10^{x} dx

Answers

Answered by Anonymous
3

\large{\mathfrak{\underline{\underline{Question:-}}}}

\bigstar\int \frac { {2} ^{x+1} - {5} ^{x-1} }{ {10} ^{x} } dx

\large{\mathfrak{\underline{\underline{Answer:-}}}}

 =  \frac{1}{5 log2 \: .  \: {2}^{x} }  -  \frac{1}{2 . log5 \: .  \: {5}^{x} }  + c

\large{\mathfrak{\underline{\underline{Explanation:-}}}}

\int \frac { {2} ^{x+1} - {5} ^{x-1} }{ {10} ^{x} } dx

 =  \int \frac{ {2}^{x }\: . \: {2}^{1} -  {5}^{x}  \: . \:  {5}^{ - 1} }{ {2}^{x} \: . \:  {5}^{x}  } dx

 =  \int \frac{2 \: . \:  {2}^{x} }{ {2}^{x} \: .  \:  {5}^{x} }  -  \frac{ {5}^{ -1} \: . \:  {5}^{x} }{ {2}^{x} \: . \:  {5}^{x}  } dx

 = 2 \int {5}^{ - x} dx -  \frac{1}{5} \int {2}^{ - x} dx

 =  - 2 \: . \:  \frac{ {5}^{x} }{ loge5 }  +  \frac{1}{5}  \: . \:  \frac{ {2}^{ - x} }{log2}  + c

 =  \frac{1}{5 log 2\: . \:  {2}^{x} }  -  \frac{1}{2 \: . \: log5 \: . \:  {5}^{x} }  + c

 \large{\mathfrak{\underline{\underline{Varification:-}}}}

\implies\int \frac { {2} ^{x+1} - {5} ^{x-1} }{ {10} ^{x} } dx

\implies\frac{1}{5 log 2\: . \:  {2}^{x} }  -  \frac{1}{2 \: . \: log5 \: . \:  {5}^{x} }  + c

Hence proved!

Similar questions