Math, asked by KunalBhiya, 1 month ago

Evaluate:-
 \\  \\  \int \: \bigg(25 + 32x -  \frac{32}{221} \times  \frac{4 + 3 + 2}{24} \times 36 -  \frac{45}{3}33    \bigg)dx  \\  \\

Answers

Answered by TheBrainlyStar00001
57

To Evaluate

 \\ \\ ✰ \:  \: \underline{ \boxed{  \tt{ \color{purple}\int \: \bigg(25 + 32x - \frac{32}{221} \times \frac{4 + 3 + 2}{24} \times 36 - \frac{45}{3}33 \bigg) \it dx}}} \:  \: ✰ \\ \\

Required Answer

\\\\➪\:\:\tt\displaystyle\int{ (25+32x- \frac{ 32  }{ 221  }   \times   \frac{ 4+3+2  }{ 24  }   \times  36- \frac{ 45  }{ 3  }  33)  }d x\\\\

➪\:\:\tt\int 25+32x-\frac{32}{221}\times \left(\frac{7+2}{24}\right)\times 36-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int 25+32x-\frac{32}{221}\times \left(\frac{9}{24}\right)\times 36-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int 25+32x-\frac{32}{221}\times \left(\frac{3}{8}\right)\times 36-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int 25+32x-\frac{32\times 3}{221\times 8}\times 36-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int 25+32x-\frac{96}{1768}\times 36-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int 25+32x-\frac{12}{221}\times 36-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int 25+32x-\frac{12\times 36}{221}-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int 25+32x-\frac{432}{221}-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int \frac{5525}{221}+32x-\frac{432}{221}-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int \frac{5525-432}{221}+32x-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int \frac{5093}{221}+32x-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int \frac{5093}{221}+32x-15\times 33\mathrm{d}x \\\\

➪\:\:\tt\int \frac{5093}{221}+32x-495\mathrm{d}x \\\\

➪\:\:\tt\int \frac{5093}{221}+32x-\frac{109395}{221}\mathrm{d}x \\\\

➪\:\:\tt\int \frac{5093-109395}{221}+32x\mathrm{d}x \\\\

➪\:\:\tt\int -\frac{104302}{221}+32x\mathrm{d}x \\\\

➪\:\:\tt\int -\frac{104302}{221}\mathrm{d}x+\int 32x\mathrm{d}x \\\\

➪\:\:\tt\int -\frac{104302}{221}\mathrm{d}x+32\int x\mathrm{d}x \\\\

☛ Find the integral of 104302/221 using the table of common integrals rule \int a\mathrm{d}x=ax.\\\\

➪\:\:\tt-\frac{104302x}{221}+32\int x\mathrm{d}x \\\\

☛ Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 32 times \frac{x^{2}}{2}.\\\\

➪\:\:\tt-\frac{104302x}{221}+16x^{2} \\\\

☛ If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.\\\\

✧ \:  \:   \underline{ \boxed{ \tt➠ \:  \color{purple}-\dfrac{104302x}{221}+16x^{2}+С }} \:  \: ✧ \\  \\

✯ Hope it helps u ✯

Answered by goraisameer9
2

✯ To Evaluate ☟

 \\ \\ ✰ \:  \: \underline{ \boxed{  \tt{ \color{purple}\int \: \bigg(25 + 32x - \frac{32}{221} \times \frac{4 + 3 + 2}{24} \times 36 - \frac{45}{3}33 \bigg) \it dx}}} \:  \: ✰ \\ \\

✯ Required Answer ☟

➪\:\:\tt\displaystyle\int{ (25+32x- \frac{ 32  }{ 221  }   \times   \frac{ 4+3+2  }{ 24  }   \times  36- \frac{ 45  }{ 3  }  33)  }d x\\\\

➪\:\:\tt\int 25+32x-\frac{32}{221}\times \left(\frac{7+2}{24}\right)\times 36-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int 25+32x-\frac{32}{221}\times \left(\frac{9}{24}\right)\times 36-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int 25+32x-\frac{32}{221}\times \left(\frac{3}{8}\right)\times 36-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int 25+32x-\frac{32\times 3}{221\times 8}\times 36-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int 25+32x-\frac{96}{1768}\times 36-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int 25+32x-\frac{12}{221}\times 36-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int 25+32x-\frac{12\times 36}{221}-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int 25+32x-\frac{432}{221}-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int \frac{5525}{221}+32x-\frac{432}{221}-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int \frac{5525-432}{221}+32x-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int \frac{5093}{221}+32x-\frac{45}{3}\times 33\mathrm{d}x \\\\

➪\:\:\tt\int \frac{5093}{221}+32x-15\times 33\mathrm{d}x \\\\

➪\:\:\tt\int \frac{5093}{221}+32x-495\mathrm{d}x \\\\

➪\:\:\tt\int \frac{5093}{221}+32x-\frac{109395}{221}\mathrm{d}x \\\\

➪\:\:\tt\int \frac{5093-109395}{221}+32x\mathrm{d}x \\\\

➪\:\:\tt\int -\frac{104302}{221}+32x\mathrm{d}x \\\\

➪\:\:\tt\int -\frac{104302}{221}\mathrm{d}x+\int 32x\mathrm{d}x \\\\

➪\:\:\tt\int -\frac{104302}{221}\mathrm{d}x+32\int x\mathrm{d}x \\\\

Find the integral of 104302/221 using the table of common integrals rule \int a\mathrm{d}x=ax.

➪\:\:\tt-\frac{104302x}{221}+32\int x\mathrm{d}x \\\\

Since \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} for k\neq -1, replace \int x\mathrm{d}x with \frac{x^{2}}{2}. Multiply 32 times \frac{x^{2}}{2}.

➪\:\:\tt-\frac{104302x}{221}+16x^{2} \\\\

If F\left(x\right) is an antiderivative of f\left(x\right), then the set of all antiderivatives of f\left(x\right) is given by F\left(x\right)+C. Therefore, add the constant of integration C\in \mathrm{R} to the result.

✧ \:  \:   \underline{ \boxed{ \tt➠ \:  \color{purple}-\dfrac{104302x}{221}+16x^{2}+С }} \:  \: ✧ \\  \\

✯ Hope it helps u ✯

Similar questions