Math, asked by kaushik05, 11 months ago

Evaluate :

 \int \limits_ {0}^{\pi}  {e}^{ | \cos x| }[ \: 3 \cos( \frac{1}{2}   \cos x) + 2 \sin \: ( \frac{1}{2}  \cos x)] \sin x \: dx \\

Answers

Answered by Anonymous
177

Question :

Evaluate :

 \int \limits_ {0}^{\pi} {e}^{ | \cos x| }[ \: 3 \cos( \frac{1}{2} \cos x) + 2 \sin \: ( \frac{1}{2} \cos x)] \sin x \: dx \\

Some useful Results used :

1) \int  e {}^{ax} \sin(bx)dx =   \frac{e {}^{ax} }{a {}^{2} + b {}^{2}  } (a \sin(bx)  - b \cos(bx) ) + c

2) \int e {}^{ax} \cos(bx)dx =  \frac{e {}^{ax} }{a {}^{2} + b {}^{2}  } (a  \cos(bx)  + b \sin(bx) ) + c

Solution :

let  \frac{1}{2} \cos(x)  = t

Now differinate with respect to x

 \implies -  \sin(x)dx = 2dt

_____________________________

 \int \limits_ {0}^{\pi} {e}^{ | \cos x| }[ \: 3 \cos( \frac{1}{2} \cos x) + 2 \sin \: ( \frac{1}{2} \cos x)] \sin x \: dx \\

 =   \bf( \frac{14e}{5}    +  \frac{14}{5e} )( \sin( \frac{1}{2} ) ) + ( \frac{8e}{5} -  \frac{8}{5e})( \cos( \frac{1}{2} ) )

Refer to the attachment

Attachments:
Answered by Anonymous
60

Answer:

  \large \boxed{ \sf{\dfrac{24}{5}\left[e ( \cos\dfrac{1}{2}  + \dfrac{1}{2} \sin\dfrac{1}{2} ) -  1 \right]}}

Step-by-step explanation:

Let's assume that,

I  =  \displaystyle\int \limits_ {0}^{\pi} {e}^{ | \cos x| }[ \: 3 \cos( \dfrac{1}{2} \cos x) + 2 \sin \: ( \dfrac{1}{2} \cos x)] \sin x \: dx

Solving further, we will get,

 =  > I  =  \displaystyle\int \limits_ {0}^{\pi} {e}^{ | \cos x| } \: 3 \sin x \cos( \frac{1}{2} \cos x)  \: dx+ \displaystyle\int \limits_ {0}^{\pi} 2 {e}^{ | \cos x| }  \sin x \sin \: ( \frac{1}{2} \cos x)  \: dx  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   ..........(i)

Simplifying further, we will get,

=  > I  =  \displaystyle\int \limits_ {0}^{\pi} {e}^{ | \cos x| } \: 3 \sin x \cos( \frac{1}{2} \cos x)  \: dx -  \displaystyle\int \limits_ {0}^{\pi} 2 {e}^{ | \cos x| }  \sin x \sin \: ( \frac{1}{2} \cos x)  \: dx  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   ..........(ii)

Now, adding eqn (i) and (ii), we get,

 =  > 2I  = 2\displaystyle\int \limits_ {0}^{\pi} {e}^{ | \cos x | } 3 \sin x \cos( \frac{1}{2} \cos x  )  \: dx \\  \\  =  >  I  = \displaystyle\int \limits_ {0}^{\pi} {e}^{ | \cos x | } 3 \sin x \cos( \frac{1}{2} \cos x  )  \: dx

Now, let's assume that,

 \cos(x)  = t

Differentiatiating both sides, we get,

 =  >  -  \sin(x) dx = dt

Therefore, we will get,

 =  > I  = 3\displaystyle\int \limits_ { - 1}^{1} {e}^{ |t| }  \cos( \frac{t}{2} )  \: dt \\  \\  =  > I  = 3 \times 2\displaystyle\int \limits_ {0}^{1} {e}^{ |t| }  \cos( \frac{t}{2} )  \: dt \\  \\  =  > I  = \displaystyle\int \limits_ {0}^{1} {e}^{t}  \cos( \frac{t}{2} )  \: dt

Hence, further simplifying, we will get,

   \sf{\dfrac{24}{5}\left[e ( \cos\dfrac{1}{2}  + \dfrac{1}{2} \sin\dfrac{1}{2} ) -  1 \right]}

\bold\red{Note:-} Refer to the attachments.

Attachments:
Similar questions