Math, asked by PragyaTbia, 1 year ago

Evaluate : \int\limits^1_0 {\frac{ x^{2}+3x+2}{ \sqrt{x}}} \, dx

Answers

Answered by Anonymous
1

Hope it may help u .. if any dought u can .. I will try my best to to clear .. it. . ...


Name Harshit

Attachments:

Anonymous: India
ishu7783: ooo
ishu7783: app ka name
Anonymous: Harshit
ishu7783: mtlb
Anonymous: My name is Harshit .. and u ??
ishu7783: ishu
Anonymous: Good
ishu7783: hmmm
Anonymous: hii
Answered by hukam0685
0

Answer:

\limits^1_0\int\:\frac{x^{2} +3x+2}{\sqrt{x} } dx=\frac{32}{5}\\

Step-by-step explanation:

\limits^1_0\int\:\frac{x^{2} +3x+2}{\sqrt{x} } dx\\ \\ \\ =\int\:\frac{x^{2} }{\sqrt{x} }dx+\int\:\frac{3x}{\sqrt{x} }dx+\int\:\frac{2}{\sqrt{x} }dx\\ \\ \\ =\int\:x^{\frac{3}{2} }dx+\int\:3\sqrt{x}\:dx+\int\:2\:x^{\frac{-1}{2} }dx\\\\

by power rule we can integrate the given function

=\frac{2\:x^{\frac{5}{2} } }{5} +\frac{6\:x^{\frac{3}{2} } }{3}+4\sqrt{x}+C\\\\\\=\frac{2\:x^{\frac{5}{2} } }{5} +2\:x^{\frac{3}{2} } +4\sqrt{x}+C\\\\

Now put the limits

=\frac{2\:(1)^{\frac{5}{2} } }{5} +2\:(1)^{\frac{3}{2} } +4\sqrt{1}+\frac{2\:(0)^{\frac{5}{2} } }{5} +2\:(0)^{\frac{3}{2} } +4\sqrt{0}\\ \\ \\=\frac{2}{5}+2+4\\ \\=\frac{2}{5}+6\\ \\ \\ =\frac{32}{5}\\


Similar questions