Math, asked by msanudeep8399, 1 year ago

Evaluate : \int\limits^{\pi/2}_0 { \frac{1}{a^{2}\sin^{2}x+b^{2}\cos^{2}x}} \, dx

Answers

Answered by abhi178
1

we have to evaluate \int\limits^{\pi/2}_0 { \frac{1}{a^{2}\sin^{2}x+b^{2}\cos^{2}x}}\,dx

numerator and denominator are divided by cos²x .

= \int\limits^{\pi/2}_0{\frac{sec^2x}{a^{2}tan^{2}x+b^{2}}}\,dx

now, let tanx = t

differentiating both sides,

sec²x dx = dt

lower limit, t = tan(0) = 0

upper limit , t = tan(π/2) = ∞

so, \int\limits^{\pi/2}_0 { \frac{1}{a^{2}\sin^{2}x+b^{2}\cos^{2}x}} \, dx converted into \int\limits^{\infty}_0{\frac{1}{a^2t^2+b^2}}\,dt

= \int\limits^{\infty}_0{\frac{1}{(at)^2+b^2}}\,dt

= \frac{1}{ab}\left[tan^{-1}\frac{at}{b}\right]^{\infty}_0

= \frac{1}{ab}\left[\frac{\pi}{2}-0\right]

= \frac{\pi}{2ab}

Answered by jitekumar4201
0

Answer:

\int\limits^{\pi/2}_0 { \frac{1}{a^{2}\sin^{2}x+b^{2}\cos^{2}x}}\ dx=\frac{\pi}{2ab}

Step-by-step explanation:

In this question,

We need to find out the value of,

\int\limits^{\pi/2}_0 { \frac{1}{a^{2}\sin^{2}x+b^{2}\cos^{2}x}}\ dx

Now, divide the Numerator and Denominator by cos²x we get,

= \int\limits^{\pi/2}_0{\frac{sec^2x}{a^{2}tan^{2}x+b^{2}}}\,dx

Now, let us say that,

tan x = t

So, on differentiating, we get,

dt = (sec²x)dx

Also,

at, x = 0,

t = tan(0) = 0

and,

At, x = π/2

t = tan(π/2) = ∞

So, on putting this in the above equation we get,

\int\limits^{\infty}_0{\frac{1}{a^2t^2+b^2}}\,dt

Therefore, on solving this further we get,

= \int\limits^{\infty}_0{\frac{1}{(at)^2+b^2}}\,dt\\=\frac{1}{ab}\left[tan^{-1}\frac{at}{b}\right]^{\infty}_0\\= \frac{1}{ab}\left[\frac{\pi}{2}-0\right]\\=\frac{\pi}{2ab}

Therefore, on integrating the given equation we get,

\frac{\pi}{2ab}

Similar questions