Math, asked by PragyaTbia, 1 year ago

Evaluate : \int\limits^{\pi/4}_0 {\frac{1}{1+x^{2}}} \, dx

Answers

Answered by hukam0685
0
Solution:

As we know that

\int {\frac{1}{1+x^{2}}} \, dx =  {tan}^{ - 1} x + c \\  \\
So here

\int\limits^{\pi/4}_0 {\frac{1}{1+x^{2}}} \, dx = ( {tan}^{ - 1} x)0 \:  \:  \: to \:  \:  \frac{\pi}{4}  \\  \\
now put upper then lower limit

( {tan}^{ - 1} \frac{\pi}{4} ) - ( {tan}^{ - 1} 0) \\  \\  = ( {tan}^{ - 1} x)
Similar questions