Math, asked by Chirandip7361, 1 year ago

Evaluate: \int \sqrt{ \frac{\cos^{3}x}{\sin^{11}x}}\ dx

Answers

Answered by MaheswariS
0

Answer:

\displaystyle\bf\int{\sqrt{\frac{cos^3x}{sin^{11}x}}}\,dx=-[\frac{2}{5}cot^{\frac{5}{2}}x+\frac{2}{9}cot^{\frac{9}{2}}x]+C

Step-by-step explanation:

\displaystyle\int{\sqrt{\frac{cos^3x}{sin^{11}x}}}\,dx

=\displaystyle\int{\frac{cosx}{sin^5x}\sqrt{\frac{cosx}{sinx}}}\,dx

=\displaystyle\int{\frac{cosx}{sinx}\frac{1}{sin^4x}\sqrt{\frac{cosx}{sinx}}}\,dx

=\displaystyle\int{cotx\,cosec^4x\,\sqrt{cotx}}\,dx

=\displaystyle\int{cot^{\frac{3}{2}}x\,cosec^2x\,cosec^2x}\,dx

=\displaystyle\int{cot^{\frac{3}{2}}x(1+cot^2x)\,cosec^2x}\,dx

=\displaystyle\int{[cot^{\frac{3}{2}}x+cot^{\frac{7}{2}}x]\,cosec^2x}\,dx

\boxed{\begin{minipage}{4cm}$Take\,t=cotx\\ \\ \frac{dt}{dx}=-cosec^2x\\ \\ \implies\,-dt=cosec^2x\,dx$\end{minipage}}

=\displaystyle\int{[t^{\frac{3}{2}}x+t^{\frac{7}{2}}]}(-dt)

=\displaystyle\,-[\frac{t^{\frac{5}{2}}}{\frac{5}{2}}+\frac{t^{\frac{9}{2}}}{\frac{9}{2}}]+C

=\displaystyle\,-[\frac{2}{5}t^{\frac{5}{2}}+\frac{2}{9}t^{\frac{9}{2}}]+C

=\displaystyle\,-[\frac{2}{5}cot^{\frac{5}{2}}x+\frac{2}{9}cot^{\frac{9}{2}}x]+C

\implies\displaystyle\bf\int{\sqrt{\frac{cos^3x}{sin^{11}x}}}\,dx=-[\frac{2}{5}cot^{\frac{5}{2}}x+\frac{2}{9}cot^{\frac{9}{2}}x]+C

Answered by ujalasingh385
0

Answer:

\mathbf{-\frac{2}{5}cot^{\frac{5}{2}}x+\frac{2}{9}cot^{\frac{9}{2}}x+C}

Step-by-step explanation:

In this question,

We have to evaluate

\mathbf{\displaystyle\int{\sqrt{\frac{cos^3x}{sin^{11}x}}}},dx

Therefore, According to the question,

= \displaystyle\int{\frac{cosx}{sin^5x}\sqrt{\frac{cosx}{sinx}}}\,dx

= \displaystyle\int{\frac{cosx}{sinx}\frac{1}{sin^4x}\sqrt{\frac{cosx}{sinx}}}\,dx

= \displaystyle\int{cotx\,cosec^4x\,\sqrt{cotx}}\,dx

= \displaystyle\int{cot^{\frac{3}{2}}x\,cosec^2x\,cosec^2x}\,dx

= \displaystyle\int{cot^{\frac{3}{2}}x(1+cot^2x)\,cosec^2x}\,dx

=\displaystyle\int{[cot^{\frac{3}{2}}x+cot^{\frac{7}{2}}x]\,cosec^2x}\,dx

\mathbf{\begin{minipage}{4cm}$Take\,t=cotx\\ \\ \frac{dt}{dx}=-cosec^2x\\ \\ \implies\,-dt=cosec^2x\,dx$\end{minipage}}

=\displaystyle\int{[t^{\frac{3}{2}}x+t^{\frac{7}{2}}]}(-dt)

=\displaystyle\,-[\frac{t^{\frac{5}{2}}}{\frac{5}{2}}+\frac{t^{\frac{9}{2}}}{\frac{9}{2}}]+C

=\displaystyle\,-[\frac{2}{5}t^{\frac{5}{2}}+\frac{2}{9}t^{\frac{9}{2}}]+C

=\displaystyle\,-[\frac{2}{5}cot^{\frac{5}{2}}x+\frac{2}{9}cot^{\frac{9}{2}}x]+C

\implies\displaystyle\bf\int{\sqrt{\frac{cos^3x}{sin^{11}x}}}\,dx=-[\frac{2}{5}cot^{\frac{5}{2}}x+\frac{2}{9}cot^{\frac{9}{2}}x]+C

Similar questions