Math, asked by PragyaTbia, 1 year ago

Evaluate: \int x\cdotp \cot^{2} x  \ dx

Answers

Answered by hukam0685
0
Solution:

To integrate the given function we must use integration by parts

Formula:

\int U.V dx=U\int V dx-\int (\frac{dU}{dx}\int V dx)dx\\\\

We know that  cot^{2}x= 1-cosec^{2}x

\int \:x\:cot^{2}x dx=\int x(1-cosec^{2}x) dx\\\\= \int\:x dx-\int\:x\:cosec^{2}xdx\\\\=\frac{x^{2}}{2}-(x\int cosec^{2}x dx- \int(\frac{d\:x}{dx}\int\:cosec^{2}x dx)dx)\\\\=\frac{x^{2}}{2}+xcot x- \int(cot x)dx\\\\=\frac{x^{2}}{2}+xcot x- log(sin x)+C\\\\

So,

\int\:x\:cot^{2}x dx=\frac{x^{2}}{2}+xcot x- log(sin x)+C\\\\
Similar questions
Math, 1 year ago
Math, 1 year ago