Math, asked by Anonymous, 11 months ago

Evaluate :

 \large \sf \lim_{x\to\ 0} \bigg( \frac{ {(x + 1) }^{5} - 1}{x} \bigg)

______ No Spam! ​

Answers

Answered by Sharad001
114

Question :-

\sf \lim_{x\to\ 0} \bigg( \frac{ {(x + 1) }^{5} - 1}{x} \bigg) \:  \\

Answer :-

 \boxed{ \red{\sf \lim_{x\to\ 0} \bigg( \frac{ {(x + 1) }^{5} - 1}{x} \bigg)} = 5}

Solution :-

\sf \lim_{x\to\ 0} \bigg( \frac{ {(x + 1) }^{5} - 1}{x} \bigg) \:  \\  \\  \sf{let \: t = x + 1} \\  \\  \rightarrow \: \sf \lim_{t\to\ 1} \bigg( \frac{ {t}^{5} -  {1}^{5} }{t - 1} \bigg) \:  \\  \\  \because \: \sf \lim_{x\to\ 0} \bigg( \frac{ {x }^{n} -  {a}^{n} }{x - a} \bigg) \:  = n {x}^{n - 1}  \\  \\  \therefore \:  \: a = 1 \: x = t \: n = 5 \\  \\  \rightarrow \: 5 \times  {1}^{5 - 1}  \\  \\  \rightarrow \: 5 \times 1 = 5

Similar questions