Math, asked by shahinsheikh084, 1 year ago

evaluate
lim   \:  \:  \:  \:  \:  \:  \: \frac{ {x}^{2 }  - x - 6}{ {x}^{3}  - 3 {x}^{2}  + x - 3}  \\ x - 3

Answers

Answered by Yuichiro13
1
Hey there,

Numerator = [ x² - x - 6 ] = ( x - 3 )( x + 2 )

Denominator = [ x³ - 3x² + x - 3 ] = ( x - 3 )( x² + 1 )

=> The limit can now be written as :

[tex] \lim_{x \to 3} \frac{( x - 3 )( x + 2 )}{( x - 3 )( x^2 + 1 )} \\ \\ = \lim_{n \to \infty} \frac{x + 2}{x^2 + 1} [/tex]

Since this is no more an indeterminate form, we can substitute the value as :

→ The limiting value = ( 3 + 2 ) / ( 3² + 1 ) = ( 1 / 2 )
Answered by Ramanujmani
6
heya...!!!!



lim \: \: \: \: \: \: \: \frac{ {x}^{2 } - x - 6}{ {x}^{3} - 3 {x}^{2} + x - 3} \\ x - 3 \\  \\  =  > lim \: \: \: \: \: \: \: \frac{ {x}^{2 } - 3x + 2x - 6}{  { {x}^{2} (x  - 3) + 1(x  - 3)}} \\ x - 3 \\  \\  =  > lim \frac{x(x - 3) + 2(x - 3)}{( {x}^{2} + 1)(x - 3) }  \\ x -  > 3 \\  \\  =  > lim \frac{(x - 3)(x + 2)}{ ({x}^{2} +1 )(x - 3) }  \\  x -  >  3 \\  \\  =  > lim \frac{(x + 2)}{( {x}^{2} + 1) }  \\ x -  > 3 \\ \\   =  > lim \frac{3 + 2}{9 + 1}  \\ x -  > 3 \\  \\  =  >  \frac{5}{10}  =  \frac{1}{2}
Similar questions