Math, asked by SharmaShivam, 9 months ago

Evaluate :- \lim_{x \to 0} \dfrac{2^x-1}{\sqrt{1+x}-1}

Answers

Answered by amansharma264
9

 \bf \to \:  \green{{ \underline{answer}}} \\  \\  \sf \to \:   \lim_{x \:  \to \: 0} =  \frac{2 {}^{x} - 1  }{ \sqrt{1 + x} - 1 }   =   log(4)

 \bf \to \:  \orange{{ \underline{step  - \: by  - \: step  - \: explanation}}}

 \sf \to \:   \lim_{x \:  \to \: 0} \:  =  \dfrac{2 {}^{x} - 1 }{ \sqrt{1 + x}  - 1}   \\  \\  \sf \to \: by \: using \: l \: hospital \: rule \\  \\  \sf \to \:   \lim_{x \:  \to \: 0} =  \dfrac{2 {}^{x} log(2)  }{(1 + x) {}^{ \dfrac{1}{2} } - 1 }   \\  \\  \sf \to \:   \lim_{x \:  \to \: 0} =  \dfrac{2 {}^{x}  log(2)  }{ \dfrac{1}{2}(1 + x) {}^{ \dfrac{ - 1}{2} }  }  \\  \\  \sf \to \: put \: x \:  = 0 \: in \: equation  \\  \\  \sf \to \:  \lim_{x \:  \to \: 0} =  \frac{2 {}^{0} log(2)  }{ \dfrac{1}{2} (1 + 0)  {}^{ \dfrac{ - 1}{2} }  }  \\  \\  \sf \to \:   \lim_{x \:  \to \: 0} = 2 log(2) \\  \\  \sf \to \:   \lim_{x \:  \to \: 0} =  log(4) =  answer


Steph0303: Great use of LaTex :)
Answered by Anonymous
2

\huge{\underline{\mathtt{\red{A}\pink{N}\green{S}\blue{W}\purple{E}\orange{R}}}}

The final answer is log(4).

Attachments:
Similar questions