Math, asked by SharmaShivam, 8 months ago

Evaluate :- \lim_{x \to \infty} \left(\dfrac{\sqrt{x^2+1}-\sqrt[3]{x^3+1}}{\sqrt[4]{x^4+1}-\sqrt[5]{x^5+1}}\right)

Answers

Answered by amansharma264
8

 \bf \to \: \green{{ \underline{answer}}} \\  \\  \sf \to \:   \lim_{x \:  \to \:  \infty } \:  = ( \frac{ \sqrt{ {x}^{2}  + 1}  -  \sqrt[3]{ {x}^{3} + 1 } }{ \sqrt[4]{x {}^{4 } + 1 }  -  \sqrt[5]{x {}^{5} + 1 } } ) =  0

 \bf \to \:  \orange{{ \underline{step  - \: by  - \: step \: -  explanation}}}

 \sf \to \:   \lim_{x \:  \to \:  \infty } \:  = ( \dfrac{ \sqrt{x {}^{2}  + 1}  -  \sqrt[3]{ {x}^{3} + 1 } }{ \sqrt[4]{ {x}^{4} + 1 }  -  \sqrt[5]{ {x}^{5}  + 1} } ) \\  \\  \sf \to \: put \: the \: value \: of \: x \:  =  \infty  \:  \:  in \: equation

\\  \\  \sf \to \:   \lim_{x \:  \to \:  \infty } = ( \frac{ \sqrt{ \infty  {}^{2}  + 1}  -  \sqrt[3]{ \infty  {}^{3}  + 1} }{ \sqrt[4]{ \infty  {}^{4} + 1 }  -  \sqrt[5]{ \infty  {}^{5}  + 1} } \\  \\  \sf \to \: it \: is \: in \: form \: of \:  =  \frac{ \infty }{ \infty }

\\  \\  \sf \to \:   \lim_{x \to \:   \infty } = ( \frac{ \sqrt{1 +  \dfrac{1}{ {x}^{2} } }  -  \sqrt[3]{1 +  \dfrac{1}{ {x}^{3} } } }{  \sqrt[4]{1 +  \dfrac{1}{ {x}^{4} } } -  \sqrt[5]{1 +  \dfrac{1}{ {x}^{5} } }  }

 \\  \\  \sf \to \:   \lim_{x \:  \to \:  \infty } = ( \frac{ \sqrt{1}  -  \sqrt{1} }{ \sqrt{1}  -  \sqrt{1} })

\\  \\  \sf \to \:   \lim_{x \:  \to \:  \infty } = ( \frac{1 - 1}{1 - 1} )   \neq  0

Not defined


SharmaShivam: Is that answer correct?
Answered by Anonymous
2

 \tt To \:  solve \\ \tt \lim_{x \to \infty} \left(\dfrac{\sqrt{x^2+1}-\sqrt[3]{x^3+1}}{\sqrt[4]{x^4+1}-\sqrt[5]{x^5+1}}\right) \\ \tt =   \lim_{x \to \infty} \left(\dfrac{\sqrt{x^2+1}-\sqrt[3]{x^3+1}}{\sqrt[9]{x^4+1}} \right) \\  \tt  = \lim_{x \to \infty}  \frac{ \sqrt{ {x}^{2} (1 +  \frac{1}{ {x}^{2} } ) - 3 \sqrt{ {x}^{3} } (1 +  \frac{1}{ {x}^{3} } })}{ \sqrt [9]{ {x}^{4} + (1 +  \frac{1}{ {x}^{2} } ) } }  \\  \tt  = \lim_{x \to \infty}( \frac{ \sqrt{1 +  \frac{1}{x} }  \sqrt [ - 3 \sqrt{3} ] {1 +  \frac{1}{ {x}^{2} } }  }{ \sqrt  [ 9x ] {1 +  \frac{1}{ \infin} } } \\  \tt  =  \frac{ \frac{1}{ \infin}  \sqrt{1 +  \frac{1}{ \infin}  }  \frac{ - 3}{ \sqrt{ \infin}  }   \sqrt{1 +  \frac{1}{ \infin} } }{  \sqrt[ 9 ] {1 +  \frac{1}{ \infin } }}  \\ \tt   =  \frac{0 \sqrt{1 + 0} - 0 \sqrt{1 + 0}  }{9 \sqrt{1 + 0} }  \\ \tt  =  \frac{0 - 0}{9}  = 0

Similar questions