Math, asked by SharmaShivam, 7 months ago

Evaluate :- \lim_{x \to \infty} \sqrt{x} \left(\sqrt{x+c}\:-\:\sqrt{x}\right)

Answers

Answered by MysteriousAryan
2

Answer:

refer \: to \: attachment \\ i \: try \: this

Attachments:
Answered by amansharma264
6

 \bf \to \:  \green{{ \underline{answer}}} \\  \\  \sf \to \:   \lim_{x \:  \to \:  \:  \infty } \:  \sqrt{x} ( \sqrt{x +c}  -  \sqrt{x} ) =  \dfrac{c}{2}

 \sf \to \:  \orange{{ \underline{step  - \: by  - \: step  - \: explanation}}}

 \sf \to \:   \lim_{ x \:  \to \:  \infty } =  \sqrt{x}( \sqrt{x + c} -  \sqrt{x}  \\  \\  \sf \to \:   \lim_{x \:  \to \:  \infty } \:  =  \sqrt{ \infty }  ( \sqrt{ \infty  \:  + c}   -  \sqrt{ \infty } ) \\  \\  \sf \to \: it \: is \: in \: the \: form \: of \:  (\infty  \:  -  \:  \infty  )\: form \\  \\  \sf \to \: when \: root \: is \: found \: in \: equation \: we \: can \: rationalise \: it \\  \\  \sf \to \:   \lim_{x \:  \to \:  \infty } \:  =  \frac{ \sqrt{x} ( \sqrt{x + c}  -  \sqrt{x})( \sqrt{x + c}  +  \sqrt{x} )  }{ \sqrt{x + c}  +  \sqrt{x} }   \\  \\  \sf \to \: using \: identity \:  =  {x}^{2}  -  {y}^{2} = (x + y)(x - y) \\  \\  \sf \to \:   \lim_{x \:  \to \:  \infty } \:  =  \frac{ \sqrt{x} (x + c - x)}{ \sqrt{x + c}  +  \sqrt{x} }

 \sf \to \:   \lim_{x \:  \to \:  \infty } \:  \dfrac{c \sqrt{x} }{  \sqrt{x + c}   +  \sqrt{x} } \\  \\  \sf \to \: put \: x \:  =   \infty  \: in \: equation \\  \\  \sf \to \:   \lim_{x \:  \to \:  \infty } \:  =  \frac{ c \sqrt{ \infty }  }{ \sqrt{ \infty  + c}  +  \sqrt{ \infty } }  \\  \\  \sf \to \: it \: is \: in \: the \: form \: of \:  \frac{ \infty }{ \infty }  form \\  \\  \sf \to \:  divide \: numerator \: and \: denominator \: by \:  \sqrt{x}  \\  \\  \sf \to \:   \lim_{x \:  \to \:  \infty } \:  =  \frac{c \dfrac{ \sqrt{x} }{ \sqrt{x} } }{ \sqrt{ \dfrac{x}{ x } +  \dfrac{c}{  x  }  } +  \frac{ \sqrt{x} }{ \sqrt{x} }   } \\  \\  \sf \to \:   \lim_{x \:  \to \:  \infty } \:  \dfrac{c}{ \sqrt{1 +  \dfrac{c}{x} }  + 1} \\  \\  \sf \to \:   \lim_{x \:  \to \:  \infty } \:  =  \dfrac{c}{2}  = answer

Similar questions