Math, asked by ayushtiwari1331, 6 months ago

Evaluate
 ln( \binom{1}{n} )  {e}^{x} dx

Attachments:

Answers

Answered by Anonymous
43

Question:-

\large\rm { \displaystyle\int_{0}^{1} \ e^{x} \ dx}

Answer:-

\large\rm { = \displaystyle\int \ e^{x} \ dx} \rm { \Bigg ( \displaystyle\int_{0}^{1} =  \displaystyle\int \Bigg )}

\large { = e^{x}}

\large { = e^{1} - e^{0} }

\large\rm{\boxed{= e-1}}

For further simplification , by putting value of  \bold{e } ,

{ e - 1 = 2.718281828 - 1}

\boxed{ e - 1 \approx 1.718281828}

Values:-

\large\rm { \displaystyle\int = \rm{ \ integral} }

 { e = \rm { Euler's \ number \ (value \approx 2.718281828)}}

Note:-

Here, "  \approx " denotes approx.

Similar questions