Math, asked by michaelgimmy, 3 months ago

Evaluate :  \mathtt {\dfrac{2^n + 2^{n-1}}{2^{n+1}-2^n}}

Answers

Answered by TheBrainlyStar00001
24

Yᴏᴜʀ Qᴜᴇsᴛɪᴏɴ

 \\   \qquad  ☯ \:  \: \bf  \underline{ Evaluate }:  -  \: \mathtt {\dfrac{2^n + 2^{n-1}}{2^{n+1}-2^n}}  \\  \\

Rᴇǫᴜɪʀᴇᴅ Aɴsᴡᴇʀ

 \\    \bigstar \:  \:  \underline  {\boxed{\bf { \color{purple}\: \underline{ Question} \:   :  -  \: \mathtt {\dfrac{2^n + 2^{n-1}}{2^{n+1}-2^n}}}}} \:  \: \bigstar \\  \\

 :  \implies \: \mathtt {\dfrac{ \cancel{2^n} (1 + 2^{-1})}{ \cancel{2^{n}} (2- 1)}} \\  \\

༒ \:  \:  \frak{ \:  \underline {There \: 2 \: to \: the \: power \: of \: n \: is \: cancelled.}} \\  \\

  :  \implies \: \tt \frac{1 + 2 {}^{ - 1} }{1}  \\  \\

༒ \:  \:  \frak{ \:  \underline {Calculate \:  2 \:  t o  \: the \:  power \:  of  \: -1  \: and \:  get \:  \dfrac{1}{2}.}} \\  \\

  :  \implies \:  \tt\frac{1 +  \frac{1}{2} }{1}  \\  \\

༒ \:  \:  \frak{ \:  \underline {Add \: 1 \: and \:  \frac{1}{2}  \: to \: get \:  \frac{3}{2}. }} \\  \\

 :  \implies \:  \tt \frac{ \frac{3}{2} }{1}  \\  \\

༒ \:  \:  \frak{ \:  \underline {Anything \: divided \: by \: one \: gives \: itself.}} \\  \\

 \bigstar \:  \:  \underline{ \boxed{ \color{purple}{ \bf \: Answer : ➠  \:  \: \tt \frac{3}{2} \approx \:  \bf \: 1.5}}} \:  \:  \bigstar  \\  \\  \\  \\

✯ Hope it helps u ✯

Answered by tennetiraj86
19

Step-by-step explanation:

Given:-

[2^n +2^(n-1)]/[2^(n+1)-2^n]

To find:-

Evaluate [2^n +2^(n-1)]/[2^(n+1)-2^n]

Solution:-

Given that

[2^n +2^(n-1)]/[2^(n+1)-2^n]

we know that a^(m-n)= a^m/a^n

and a^(m+n)=a^m×a^n

=>[2^n+(2^n/2^1)]/[(2^n×2^1)-2^n]

=>2^n[1+(1/2)] / [2^n(2-1)]

On cancelling 2^n in numerator and denominator

=>[1+(1/2)]/(2-1)

=>[(2+1)/2]/1

=>3/2

Answer:-

The value of the given expression is 3/2

Used formulae:-

  • a^(m-n)= a^m/a^n

  • a^(m+n)=a^m×a^n
Similar questions