Math, asked by Anonymous, 1 day ago

Evaluate :-

 \quad \qquad { \bigstar { \underline { \boxed { \bf { \red \int \limits_{0}^{3} \int \limits_{0}^{2} \int \limits_{0}^{1} ( x + y + z ) dx.dy.dz } } } { \bigstar} }  }

Topic :- Triple Integrals

Standard :- B.Sc ​

Answers

Answered by TrustedAnswerer19
79

 \boxed{ \begin{array}{cc} \bf \to \: given  : \\  \\  \rm \: \displaystyle \int \limits_{0}^{3} \int \limits_{0}^{2} \int \limits_{0}^{1}  \bf \: ( x + y + z )  \: dx.dy.dz \\  \\ \rm \:  =  \: \displaystyle \int \limits_{0}^{3} \int \limits_{0}^{2}\bigg \{ \int \limits_{0}^{1} \bf \:  ( x + y + z ) dx\bigg \} \: .dy.dz \\  \\ \pink{ \sf \: integrate \: w.r.t \:  \bf \: x} \\  \\  \rm \:  =  \: \displaystyle \int \limits_{0}^{3} \int \limits_{0}^{2} \bf \: \bigg[\frac{ {x}^{2} }{2}  + xy + xz\bigg]_{0}^{1}.dy.dz  \\  \\ \rm \:  =  \: \displaystyle \int \limits_{0}^{3} \int \limits_{0}^{2} \bf \: \bigg( \frac{ {1}^{2} }{2}  + 1.y+1.z - 0\bigg)dy.dz  \\  \\ \rm \:  =  \: \displaystyle \int \limits_{0}^{3} \int \limits_{0}^{2} \bf \: \bigg(\frac{1}{2}  + y + z\bigg )dy.dz \end{array}}

 \boxed{ \begin{array}{cc} \pink { \sf \: integrate \: w.r.t \:  \bf \: y} \\ \\\rm \:  =  \: \displaystyle \int \limits_{0}^{3} \bf\bigg \{ \int \limits_{0}^{2}\bigg (\frac{1}{2}  + y + z\bigg)dy\bigg \} \: .dz \\  \\ \rm \:  =  \: \displaystyle \int \limits_{0}^{3} \bf \: \bigg [\frac{y}{2}  +  \frac{ {y}^{2} }{2}  + yz\bigg ]_{0}^{2} \: dz \\  \\ \rm \:  =  \: \displaystyle \int \limits_{0}^{3} \bf \: \bigg( \frac{2}{2}  +  \frac{ {2}^{2} }{2}  + 2z - 0\bigg) \: dz \\  \\ \rm \:  =  \: \displaystyle \int \limits_{0}^{3} \bf \: (1 + 2  + 2z) \: dz \\  \\\rm \:  =  \: \displaystyle \int \limits_{0}^{3} \bf \: (3 + 2z) \: dz  \\  \\  \pink{ \sf \: integrate \: w.r.t \:  \bf \: z} \\  \\ \rm \:  =  \:  \bf\bigg[3z + \dfrac{2 {z}^{2} }{2}  \bigg]_{0}^{3} \\  \\ \rm \:  =  \bf \: \bigg[3z +  {z}^{2}  \bigg]_{0}^{3} \\  \\ \rm \:  =  \: (3 \times 3 +  {3}^{2}\ - 0)\   \\ \\ \: \rm \:  =  \: 9 + 9 \\   \\ \rm \:  =  \: 18 \\  \\ \: \end{array}}

\orange{\boxed{\boxed{\begin{array}{cc} \rm \: \therefore \: \displaystyle \int \limits_{0}^{3} \int \limits_{0}^{2} \int \limits_{0}^{1}  \bf \: ( x + y + z )  \: dx.dy.dz = 18\end{array}}}}

Similar questions